PLANT ARCHITECTURE AND GALL ABUNDANCE ON TWO PLANT SPECIES FROM RESTINGA, RJ, BRAZIL

Ismael Cividini Flor, Valéria Cid Maia, Thaynara Pacheco

Abstract


Several hypotheses have been proposed to explain the distribution pattern and abundance of herbivorous insects on its host plants. For example, the plant architecture hypothesis predicts that variation in host plant architecture influences insect herbivore community structure, dynamics and performance.  This study aimed to test the plant architecture hypothesis and its relation with gall abundance on two Brazilian endemic plant species, Clusia lanceolata (Clusiaceae) and Monteverdia obtusifolia (Celastraceae) in Maricá Restinga, Rio de Janeiro. Plant architecture and gall abundance were directly recorded on 30 individuals from each plant species. Plant height, soil height circumference, number of second and third level ramifications, treetop area, plant volume, and leaf number were all used as predicting variables of gall abundance. A total of 922 insect galls were registered on C. lanceolata and 1.139 on M. obtusifolia. Variations on plant architecture did not explain gall abundance for both plant species. Results can be explained the plastic potential of the species studied. In this sense, the morphological changes in C. lanceolata and M. obtusifolia caused by the galls may have been buffered to maintain the vigor of the species. The difference between the variables in relation to gall abundance indicates that species studied can tolerate and minimize the presence of galling insects, revealing a high capacity for homeostasis in the face of biotic stress.


Keywords


: gall inducing insects; super-host; architectural complexity; Atlantic Forest.

Full Text:

PDF

References


Alonso, C., & Herrera, C. M. 1996. Variation in herbivory within and among plants of Daphne laureola (Thymelaeaceae): correlation with plant size and architecture. Journal of Ecology, 84(4), 495–502. DOI: 10.2307/2261472

Alves-Silva, E. 2012. The influence of Ditylenchus (Nematoda) galls and shade on the fluctuating asymmetry of Miconia fallax (Melastomataceae). Ecologia Austral, 22(1), 53–61.

Araújo, A. P. A., Paula, J. D., Carneiro, M. A. A., & Schoereder, J. H. 2006. Effects of host plant architecture on colonization by galling insects. Austral Ecology, 31, 343–348. DOI: 10.1111/j.1442-9993.2006.01563.x

Araújo, W. S., & Santos, B. B. 2008. Efeitos do habitat e da sazonalidade na distribuição de insetos galhadores na Serra dos Pireneus, Goiás. Revista de Biologia Neotropical, 5(2), 33–39. DOI: 10.5216/rbn.v5i2.9820

Araújo, W. S., & Santos, B. B. 2009. Efeitos da sazonalidade e do tamanho da planta hospedeira na abundancia de galhas de Cecidomyiidae (Diptera) em Piper arboreum (Piperaceae). Revista Brasileira de Entomologia, 53(2), 300–303. DOI: 10.1590/S0085-56262009000200014.

Basset, Y., & Burckhardt, D.1992. Abundance, species richness, host utilization and host specificity of forest folivores from a woodland site, with particular reference to host architecture. Revue suisse de Zoologie, 99, 771–791. DOI: 10.5962/bhl.part.79853

Bergamini, B. A. R., Bergamini, L. L., Santos, B. B., & Araujo, W. S. 2017. Distribution of insect galls in xeric and mesic habitats of Floresta Nacional de Silvânia, Brasil. Iheringia, Série Zoologia 107: e2017042. doi:10.1590/1678-4766e2017042

Carneiro, M. A. A., Branco, C. S. A., Braga, C. E. D., Almada, E. D., Costa, M. B. M., fernandes, G. W. & Maia, V.C. 2009. Are gall midge species (Diptera: Cecidomyiidae) host plant specialists? Revista Brasileira de Entomologia, 53, 365–378. http://dx.doi.org/10.1590/S0085- 56262009000300010

Cintrón, G., & Schaeffer-Novelli, Y. 1984. Methods for studying mangrove structure. In: S. C. Snedaker & J. G. Snedaker (Eds.), The mangrove ecosystem: Research methods. Monographs in Oceanographic Methodology 8. pp. 91–113. Paris, France: UNESCO.

Collevatti, R. G., & Sperber, C. F. 1997. The gall makes Neopelma baccharidis Burck. (Homoptera: Psyllidae) on Baccharis dracunculifolia DC (Asteraceae): individual, local and regional patterns. Anais da Sociedade Entomológica do Brasil, 26(1), 45–53. DOI: 10.1590/S0301-80591997000100006

Cook, L.G., & Gullan, P. J. 2008. Insect, not plant, determines gall morphology in the Apiomorpha pharetrata species-group (Hemiptera: Coccoidea). Australian Journal of Entomology, 47, 51–57. DOI: 10.1111/j.1440-6055.2007.00605.x

Cornelissen T., & Stiling, P. 2008. Clumped distribution of oak leaf miners between and within plants. Basic and Applied Ecology, 9, 67–77. https://doi.org/10.1016/j.baae.2006.08.007

Costa, F. V., Fagundes, M., & Neves, F. S. 2010. Arquitetura da planta e diversidade de galhas associadas à Copaifera langsdorffii (Fabaceae). Ecologia Austral, 20(1), 9–17.

Denno, R. F., & Roderick, G. K. 1991. Influence of patch size, vegetation structure, and host plant architecture on the diversity, abundance, and life history styles of sap-feeding herbivores. In: S. S. Bell., E. D. McCoy & H. R. Mushinsky (Eds.), Habitat structure: the physical arrangement of objects in space. pp. 169–196. Chapman and Hall, London.

Debat, V. & David, P. 2001 Mapping phenotypes: canalization, plasticity and developmental stability. Trends in Ecology & Evolution, 16(10), 555–561. https://doi.org/10.1016/S0169-5347(01)02266-2

Espírito-Santo, M. M., Neves, F. S., Andrade-Neto, F. R., & Fernandes, G. W. 2007. Plant architecture and meristem dynamics as the mechanisms determining the diversity of gall-inducing insects. Oecologia, 153(2), 353–364. DOI: 10.1007/s00442-007-0737-8

Fagundes, M., Neves, F. S., & Fernandes, G. W. 2005. Direct and indirect interactions involving ants, insect hetbivores, parasoitoids, and the host plant Baccharis dracunculifolia (Asteraceae). Ecological Entomology, 30(1),28–35. DOI: 10.1111/j.0307-6946.2005.00668.x

Fernandes, G. W., Carneiro, M. A. A., Lara, A. C. F., Allain, L. R., Andrade, G. I., Julião, G. R., Reis, T. R., & Silva, I. M. 1996. Galling species on Neotropical species of Baccharis (Asteraceae). Tropical Zoology 9(2), 315–332. DOI: 10.1080/03946975.1996.10539315

Fleck, T., & Fonseca, C.R. 2007. Hipóteses sobre a riqueza de insetos galhadores: uma revisão considerando os níveis intra-específico, interespecífico e de comunidade. Neotropical Biology and Conservation, 2(1), 36–45.

Gonçalves-Alvin, S. J., Landau, E.C., Fagundes, M., Silva, V. G., Nunes, Y. R. F., & Fernandes, G. W. 1999. Abundance and impact of a Lepidopteran gall on Macairea radula (Melastomataceae) in the Neotropics. International Journal of Ecology and Environmental Sciences, 25(2), 115–125.

Hayson, K. A., & Coulson, J. C. 1998. The Lepidoptera fauna associated with Calluna vulgaris: efects of plant architecture on abundance and diversity. Ecological Entomology, 23, 377–385

Hilbe, J. M. 2011. Negative Binomial regression. Cambridge University Press, Oxford, UK, p. 553.

Hosaka, T., Takagi, S., & Okuda, T. 2009. A preliminary survey of insect galls on dipterocarps in a lowland rainforest at Pasoh, Peninsular Malaysia. Tropics, 18, 93–102. https://doi.org/10.3759/tropics.18.93

Lara, A. C. F., Fernandes, G. W., & Gonçalves-Alvim, S. J. 2002. Test of hypotheses on patterns of gall distribution along an altitudinal gradient. Tropical Zoology, 15, 219–232. https://doi.org/10.1080/03946975.2002.10531176

Lara, D. P., Oliveira, L. A., Azevedo, I. F. P., Xavier, M. F., Silveira, F. A. O., Carneiro, M. A. A., & Fernandes, G. W. 2008. Relationships between host plant architecture and gall abundance and survival. Revista Brasileira de Entomologia, 52(1), 78–81. DOI: 10.1590/S0085-56262008000100014

Lawton, J. H. 1983. Plant architecture and the diversity of phytophagous insect. Annual Review of Entomology, 28(1), 23–39. DOI: 10.1146/annurev.en.28.010183.000323

Lomônaco, C., & Germanos, E. 2001. Variações fenotípicas em Musca domestica L. (Diptera: Muscidae) em resposta à competição larval por alimento. Neotropical Entomology, 30(2),223–231. http://dx.doi.org/10.1590/S1519-566X2001000200004

Maia, V. C. 2001. The gall midges (Diptera, Cecidomyiidae) from three restingas of Rio de Janeiro State, Brazil. Revista Brasileira de Zoologia, 18(2), 305–656. DOI: 10.1590/S0101-81752001000200028

Maia, V. C. 2013. Galhas de insetos em restingas da região sudeste do Brasil com novos registros. Biota Neotropica, 13(1), 183–209. DOI: 10.1590/S1676-06032013000100021

Mani, M. S. 1964. The Ecology of Plant Galls. Dr. Junk, The Hague. p. 434.

Marquis, R. J., Lill, J. T., & Piccinni, A. 2002. Effect of plant architecture on colonization and damage by leaftying caterpillars of Quercus alba. Oikos, 99(3), 531–537. DOI: 10.1034/j.1600-0706.2002.11897.x

McGeoch, M. A., & Price, P. W. 2004. Spatial abundance structures in an assemblages of gall-forming sawflies. Journal of Animal Ecology, 73, 506–516. https://doi.org/10.1111/j.0021-8790.2004.00825.x

Miller, W. B., & WEIS, A. E. 1999. Adaptation of coyote brush to the abiotic environment and its effects on susceptibility to gall-making midge. Oikos, 84, 199–208. DOI: 10.2307/3546714

Nimer, E. 1972. Climatologia da região Sudeste do Brasil. Revista Brasileira de Geografia, 34, 3–48.

Price, P. W. 1997. Insect ecology. 3rd. (Ed.), New York, Wiley: p. 801. https://doi.org/10.1017/CBO9780511975387

Price, P. W., Roininen, H., & Zinovjev, A. 1998. Adaptive radiation of gall inducing sawflies in relation to architecture and geographic range of willow host plants. In: G. Csóka, W. J. Mattson, G. N. Stone, & P. W. Price (Eds.), The biology of gall-inducing arthropods. pp. 196–203., St. Paul, Minnesota: USDA.

R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org

Rohfritsch, O. 1992. Patterns in gall development. In: J. D. Shorthouse & O. Rohfritsch (Eds.), Biology of insect-induced galls. pp. 60–86. Oxford, UK: University Press.

Silva, A. L. C. 2011. Arquitetura Sedimentar e Evolução Geológica da Planície Costeira Central de Maricá (RJ) ao longo do Quaternário. Tese de Doutorado. Programa de Pós-Graduação em Geologia e Geofísica Marinha, Universidade Federal Fluminense, Niterói. 185 p.

Silva, L. L., Santos, R. C. O., & Fernandes, M. E. B. 2017. Linking Avicennia germinans (Acanthaceae) architecture to gall richness and abundance in Brazilian Amazon mangroves. Biotropica, 49(6), 1–8. DOI: 10.1111/btp.12455

Silva, J. G., & Oliveira, A. S. 1989. A vegetação de restinga no município de Maricá, RJ. Acta Botanica Brasilica, 3(2), 253–272. DOI: 10.1590/S0102-33061989000300021

Stone, G. N., & Schonrogge, K. 2003. The adaptive significance of insect gall morphology. Trends in Ecology & Evolution, 18(10), 512–521. DOI: 10.1016/S0169-5347(03)00247-7

Vrcibradic, D., Rocha, C. F. D., & Monteiro, R. F. 2000. Patterns of gall forming in Ossaea confertiflora (Melastomataceae) by Lopesia brasiliensis (Diptera: Cecidomyiidae) in an area of Atlantic Rainforest in Southeastern Brazil. Revista Brasileira de Biologia, 60(1), 159–166. DOI: 10.1590/S0034-71082000000100018

Woodcock, B. A., Potts, S. G., Westbury, D. B., Ramsay, A. J., Lamber, M., Harris, S. J., & Brown, V. K. 2007. The importance of sward architectural complexity in structuring predatory and phytophagous invertebrate assemblages. Ecological Entomology, 32(3), 302–311. DOI: 10.1111/j.1365-2311.2007.00869.x

Yukawa, J. 2000. Synchronization of gallers with host plant phenology. Population Ecology, 42, 105–113. https://doi.org/10.1007/PL00011989




DOI: https://doi.org/10.4257/oeco.2020.2403.12

Refbacks

  • There are currently no refbacks.


 SCImago Journal & Country Rank