SPATIO-TEMPORAL CHANGES IN THE STRUCTURE OF THE ANT, BEE, AND TREE COMMUNITIES IN THE BRAZILIAN CERRADO
DOI:
https://doi.org/10.4257/oeco.2020.2402.15Keywords:
Anthropogenic impacts, Community dynamics, Dry forests, Euglossini, Formicidae.Abstract
In this study, we described the changes in land cover and land use, in climate, and in the incidence of fires that have occurred over the last decades within the region of the “Triângulo Mineiro and Southeastern Goiás” site (TMSG) of the Long-term Ecological Program (PELD-CNPq). We also evaluated to what extent some stressors, such as habitat fragmentation, fire events and the creation of artificial dams, are related to temporal changes in the communities of euglossine bees, ants and trees. We detected abrupt changes in both climate and native vegetation cover in the TMSG region. Since 2000, the area occupied by native vegetation has declined from 34.5 to 25.5 % while the incidence of fires increased exponentially. Moreover, the annual maximum temperature is 2.5 °C higher than it was about 30 years ago. Temporal changes in the composition of the euglossine community in forest fragments (varying in size from 16 to 200 ha) were gradual and non-directional, suggesting that the community is in equilibrium. For arboreal ants associated with savannas, our data also indicate an absence of directionality in the community trajectory. However, there is evidence that changes are no longer gradual in the presence of recurrent fire events. In contrast, the tree communities showed gradual and directional changes, indicating the existence of a successional process in these communities. These changes started, in one case, by the construction of a reservoir along the margin of the forest fragment and, in the other, by the suppression of anthropic disturbances when the fragment became part of a protected area.
References
Andela, N., Morton, D. C., Giglio, L., Chen, Y., Van der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Yue, C., & Randerson, J. T. 2017. A human-driven decline in global burned area. Science, 356(6345), 1356–1362. DOI: https://doi.org/10.1126/science.aal4108
Bates D, Maechler M, Bolker B, Walker S. 2014. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1–7.
Berner, E. K., & Berner, R. A. 2012. Global environment: water, air, and geochemical cycles. 2nd ed. Princeton University Press: p.488.
Campos, R. I., Vasconcelos, H. L., Andersen, A. N., Frizzo, T. L. M., & Spena, K. C. 2011. Multi-scale ant diversity in savanna woodlands: An intercontinental comparison. Austral Ecology, 36, 983–992. DOI: https://doi.org/10.1111/j.1442-9993.2011.02255.x
Cardoso, E., M. I. C. Moreno, E. M. Bruna, & Vasconcelos, H. L. 2009. Mudanças fitofisionômicas no Cerrado: 18 anos de sucessão ecológica na Estação Ecológica do Panga, Uberlândia - MG. Caminhos da Geografia, 10, 254–268.
Costa, B. M., Pantoja, D. L., Vianna, M. C. M., & Colli, G. R. 2013. Direct and short-term effects of fire on lizard assemblages from a Neotropical Savanna hotspot. Journal of Herpetology, 47(3), 502–510. DOI: https://doi.org/10.1670/12-043
Coutinho, L. M. 1990. Fire in the ecology of the Brazilian cerrado. In: J.G. Goldamer (Ed.), Fire in the tropical biota — ecosystem process and global challenges. pp. 82–105 Berlin: Springer-Verlag.
Donoso, D. A. 2013. Tropical ant communities are in long-term equilibrium. Ecological Indicators, 83, 515–523. DOI: https://doi.org/10.1016/j.ecolind.2017.03.022
Finegan, B., Peña-Claros, M., Oliveira, A., Ascarrunz, N., Bret-Harte, M.S., Carreño-Rocabado, G., Casanoves F., Diaz, S., Velepucha, P. E., Fernandez, F., Licona, J. C., Lorenzo, L., Salgado-Negret, B., Vaz, M., & Poorter, L. 2015. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 103, 191–201. DOI: https://doi.org/10.1111/1365-2745.12346
Frizzo, T. L. M., Campos, R. I., & Vasconcelos, H. L. 2012. Contrasting effects of fire on arboreal and ground-dwelling ant communities of a Neotropical savanna. Biotropica 44: 254–261. DOI: https://doi.org/10.1111/j.1744-7429.2011.00797.x
IBGE 2018. Monitoramento da Cobertura e Uso da Terra. Disponível em: <https://www.ibge.gov.br/geociencias/informacoes-ambientais/cobertura-e-uso-da-terra.html>, acesso em 01/08/2019.
INMET 2019. BDMEP - Banco de Dados Meteorológicos para Ensino e Pesquisa. Disponível em: <http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep>, acesso em 02/07/2019.
INPE 2018. Banco de Dados de Queimadas: Plataforma digital para monitoramento e alerta de fogo na vegetação no Cerrado brasileiro. Disponível em: <http://queimadas.dgi.inpe.br/queimadas/bdqueimadas/>, acesso em 25/07/2019
Liu, W., Liu, G., Liu, H., Song, Y., & Zhang, Q. 2013. Subtropical reservoir shorelines have reduced plant species and functional richness compared with adjacent riparian wetlands. Environmental Research Letters, 8, 044007. DOI: https://doi.org/10.1088/1748-9326/8/4/044007
Lohbeck, M., Poorter, L., Lebrija‐Trejos, E., Martínez‐Ramos, M., Meave, J. A., Paz, H., Pérez-García, E., Romero-Pérez, I. E., Tauro, A., & Bongers, F. 2013. Successional changes in functional composition contrast for dry and wet tropical forest. Ecology, 94, 1211–1216. DOI: https://doi.org/10.1890/12-1850.1
Lopes, S. F., Prado-Júnior, J. A., Vale, V. S., & Schiavini, I. 2013. Impactos ambientais antrópicos como modificadores da estrutura e funcionalidade de florestas estacionais semideciduais no Triângulo Mineiro, Brasil. Caminhos de Geografia, 14, 233–242.
Marshman, J., Blay-Palmer, A., & Landman, K. Anthropocene Crisis: Climate Change, Pollinators, and Food Security. Environments, 2019, 6.2: 22. DOI: https://doi.org/10.3390/environments6020022
Matthews, W. J., Marsh-Matthews, E., Cashner, R. C., & Gelwick, F. 2013. Disturbance and trajectory of change in a stream fish community over four decades. Oecologia 173, 955–969. DOI: https://doi.org/10.1007/s00442-013-2646-3
Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M., & Gascon, C. 2011. Global biodiversity conservation: the critical role of hotspots. In: Zachos F., Habel J. (Eds), Biodiversity hotspots. pp. 3-22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20992-5_1
Morais, H. C., & Benson, W. W. 1988. Recolonização de vegetação de Cerrado após queimada, por formigas arborícolas. Revista Brasileira de Biologia, 48, 459–466.
Oksanen, J., Blanchet F. G., Friendly M., Kindt R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs E. & Wagner, H. 2019. Package ‘vegan’. Community ecology package, version, 2.5-6.
Pivello, V. R. 2011. The use of fire in the Cerrado and Amazonian rainforests of Brazil: past and present. Fire ecology, 7(1), 24–39. DOI: 10.1126/science.1208742 https://doi.org/10.4996/fireecology.0701024
Poorter, L., van der Sande, M. T., Arets E. J. M. M., Ascarrunz, N., Enquist, B. J., Finegan B., Licona, J. C., Martínez-Ramos, M., Mazzei, L., Meave, J. A., Muñoz, R., Nytch, C., J., Oliveira, A. A., Pérez-García, E. A., Prado-Junior, J., Rodríguez-Velázques, J., Ruschel, A., R., Salgado-Negret, B., Schiavini, I., Swenson, N. G., Tenorio, E. A., Thompson, J., Toledo, M., Uriarte, M., van der Hout, P., Zimmerman, J. K., & Peña-Claros, M. 2017. Biodiversity and climate determine the functioning of Neotropical forests. Global Ecology and Biogeography, 26, 1423–1434. DOI: https://doi.org/10.1111/geb.12668
Prado-Junior, J. A., Schiavini, I., Vale, V. S., Arantes, C. S., Sande, M. T., Lohbeck, M., & Poorter, L. 2016. Conservative species drive biomass productivity in tropical dry forests. Journal of Ecology, 104(3), 817–827. DOI: https://doi.org/10.1111/1365-2745.12543
Pyles, M. V., Prado-Junior, J. A., Magnago, L. F., Paula, A., & Meira-Neto, J. A. 2018. Loss of biodiversity and shifts in aboveground biomass drivers in tropical rainforests with different disturbance histories. Biodiversity and Conservation, 27, 3215–3231. DOI: https://doi.org/10.1007/s10531-018-1598-7
R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Raymundo, D., Prado-Junior, J., Carvalho, F. A., Vale, V. S., Oliveira, P. E., & van der Sande, M. T. 2019. Shifting species and functional diversity due to abrupt changes in water availability in tropical dry forests. Journal of Ecology, 107, 253–264. https://doi.org/10.1111/1365-2745.13031
Redford, K. H., & da Fonseca, G. A. 1986. The Role of Gallery Forests in the Zoogeography of the Cerrado's Non-volant Mammalian Fauna. Biotropica, 126–135. DOI: https://doi.org/10.2307/2388755
Ribeiro, M. B. P., & Oliveira, L. P. 2015. Formação territorial do Triângulo Mineiro (MG): a cidade de Uberlândia como centro comercial. InterEspaço: Revista de Geografia e Interdisciplinaridade, 1, 188–203. DOI: https://doi.org/10.18766/2446-6549/interespaco.v1n2p188-203
Rodrigues-Souza, J., Prado-Júnior, J. A., Vale, V. S., Schiavini, I., Oliveira, A. P., & Silvério Arantes, C. 2015. Secondary forest expansion over a savanna domain at an ecological reserve in the Southeastern Brazil after 15 years of monitoring. Brazilian Journal of Botany, 38, 311–322. DOI: https://doi.org/10.1007/s40415-015-0146-x
Rosa, T. F. 2020. Incêndios de alta intensidade e seus efeitos sobre a comunidade de formigas arborícolas do Cerrado. Master thesis. Universidade Federal de Uberlândia, MG.
Roubik, D.W. 2001. Ups and downs in pollinator populations: when is there a decline? Conservation Ecology, 5(1), 2. DOI: https://doi.org/10.5751/ES-00255-050102
Roubik, D.W., & Ackerman, J.D. 1987. Long-Term Ecology of Euglossine Orchid-Bees (Apidae: Euglossine) in Panama. Oecologia. 73, 321–333. DOI: https://doi.org/10.1007/BF00385247
Rozendaal, D.M.A., & Chazdon, R.L. 2015. Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica. Ecological Applications, 25, 506–516. https://doi.org/10.1890/14-0054.1
Sánchez-Bayo, F., & Wyckhuys, K. A. G. 2019. Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation, 232, 8–27. DOI: https://doi.org/10.1016/j.biocon.2019.01.020
Silveira, G. C., Freitas, R. F., Tosta, T. H. A., Rabelo, L. S., Gaglianone, M. C., & Augusto, S. C. 2015. The orchid bee fauna in the Brazilian savanna: do forest formations contribute to higher species diversity? Apidologie, 46, 197–208. DOI: https://doi.org/10.1007/s13592-014-0314-1
Simon, M. F., Grether, R., de Queiroz, L. P., Skema, C., Pennington, R. T., & Hughes, C. E. 2009. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proceedings of the National Academy of Sciences, 106, 20359–20364. DOI: https://doi.org/10.1073/pnas.0903410106
Strassburg, B. B., Brooks, T., Feltran-Barbieri, R., Iribarrem, A., Crouzeilles, R., Loyola, R., Latawiec, A. E., Oliveira Filho, F. J. B., Scaramuzza, C. A. M., Scarano, F. R., Soares-Filho, B., Balmford, A. 2017. Moment of truth for the Cerrado hotspot. Nature Ecology & Evolution, 1 (4), 0099. DOI: https://doi.org/10.1038/s41559-017-0099
Terra, M. D. C. N. S., Santos, R. M., Fontes, M. A. L., de Mello, J. M., Scolforo, J. R. S., Gomide, L. R., Prado-Junior, J. A., Schiavini, I., ter Steege, H. 2017. Tree dominance and diversity in Minas Gerais, Brazil. Biodiversity and Conservation, 26, 2133–2153. DOI: https://doi.org/10.1007/s10531-017-1349-1
Tosta, T. H. A, Silveira, G. C., Schiavini, I., Sofia, S. H., & Augusto, S. C. 2017. Using short-term surveys and mark-recapture to estimate diversity and population size of orchid bees in forest formations of the Brazilian savanna. Journal of Natural History, 1, 1–13. DOI: https://doi.org/10.1080/00222933.2016.1274441
UNFCCC - United Nations Framework Convention on Climate Change. 2015. Conference of the parties on its twenty-first session, held in Paris from 30 November to 13 December 2015. Addendum-Part two action Tak by Conf Parties 1194, 1–36.
Vasconcelos, H. L., Maravalhas, J. B., & Cornelissen, T. 2017. Effects of fire disturbance on ant abundance and diversity: a global meta-analysis. Biodiversity and Conservation, 26, 177–188. DOI: https://doi.org/10.1007/s10531-016-1234-3
Vasconcelos, H. L., Maravalhas, J. B., Feitosa, R. M., Pacheco, R., Neves, K. C., & Andersen, A. N. 2018. Neotropical savanna ants show a reversed latitudinal gradient of species richness, with climatic drivers reflecting the forest origin of the fauna. Journal of Biogeography, 45, 248–258. DOI: https://doi.org/10.1111/jbi.13113