BIOMONITORAMENTO CONTÍNUO DE ÁGUAS DO PELD-BAÍA DE GUANABARA: INTENSA VARIAÇÃO NICTEMERAL DE GASES METABÓLICOS NA CONDIÇÃO EUTRÓFICA TROPICAL
DOI:
https://doi.org/10.4257/oeco.2020.2402.10Keywords:
Greenhouse gases, acidification, hypoxia, eutrophication, within-day variationAbstract
Evidências crescentes indicam importantes consequências de mudanças globais relacionadas a eutrofização, hipóxia, acidificação e balanço de gases envolvidos na síntese e degradação biológicas de matéria orgânica (i.e., metabolismo) nas águas costeiras tropicais. No entanto, a escassez de dados sobre a variação nictemeral dos principais gases metabólicos (i.e., oxigênio -O2- e dióxido de carbono -CO2-) ainda restringe nossa compreensão sobre a ciclagem de carbono (C) nesses ecossistemas quentes altamente produtivos, especialmente em condições eutróficas. O objetivo do presente estudo foi analisar a variação nictemeral da pressão parcial de ambos os gases metabólicos (pO2 e pCO2), bem como de parâmetros físico-químicos da água ao longo do inverno de 2018 em uma praia de baía tropical altamente eutrofizada (Baía de Guanabara, região metropolitana do Rio de Janeiro, Brasil), no âmbito dos primeiros resultados do Biomonitoramento Contínuo de Águas do Programa Ecológico de Longa Duração da Baía de Guanabara (BiCA/PELD-Guanabara). Os resultados indicaram intensas alternâncias de supersaturação e subsaturação de CO2 entre os períodos noturno e diurno respectivamente, bem como o oposto para O2. Além disso, a relação negativa de CO2 e temperatura da água foi muito superior à esperada por processos físico-químicos, confirmando a predominância de controles biológicos sobre CO2, acidificação e hipóxia nas águas costeiras eutróficas superficiais. No entanto, declínios matinais de CO2 acompanhando aumentos de temperatura não foram observados em todos os meses, também revelando o papel da pluviosidade sobre a mediana diária de pCO2, provavelmente devido à redução de radiação solar aos autótrofos e incrementos de substratos orgânicos aos heterótrofos ou aportes alóctones desse gás. Como conclusão, intensas variações de curto prazo em gases metabólicos podem apresentar profundas implicações ao balanço de C nas águas costeiras tropicais eutróficas, um componente das mudanças globais que deveria ser melhor avaliado em programas de monitoramento.
CONTINUOUS WATER BIOMONITORING IN THE LTER- GUANABARA BAY: STRONG WITHIN-DAY VARIATION OF METABOLIC GASES IN TROPICAL EUTROPHIC CONDITIONS:Growing evidence indicates important global change consequences related to eutrophication, hypoxia, acidification and the balance of gases involved in the biological synthesis and degradation of organic matter (i.e., metabolism) in tropical coastal waters. However, the scarcity of data on within-day variation in main metabolic gases (i.e., oxygen -O2- and carbon dioxide -CO2-) still constrains our understanding of carbon (C) cycling in these highly productive warm ecosystems, especially at eutrophic conditions. Here, the aim was to assess the within-day variation of the partial pressure of both metabolic gases (pO2 and pCO2) associated to water physico-chemical parameters over the winter of 2018 in a beach of highly eutrophic tropical bay (Guanabara Bay, metropolitan region of Rio de Janeiro, Brazil), within the scope of the first results of the Continuous Biomonitoring of Waters of the Long-term Ecological Research Program in the Guanabara Bay (BiCA/PELD-Guanabara, acronym in Portuguese). As a result, intense shifts of supersaturation and undersaturation of CO2 between nocturnal and diurnal periods respectively, and the opposite for O2 were observed. In addition, the negative relationship of CO2 and water temperature was much higher than that expected by physical-chemical processes, confirming the predominance of biological controls on pCO2, acidification and hypoxia in surface eutrophic waters. However, morning declines in pCO2 with increasing temperature were not observed in all months, also revealing the role of rainfall on daily medians of pCO2, likely due to decreased solar radiation to autotrophs and increased terrestrial organic substrates to heterotrophs or the allochthonous CO2 contributions. In conclusion, strong short-term variations in metabolic gases may have profound implications for C balance in eutrophic tropical coastal waters, a component of global change that should be better assessed in monitoring programs.
References
Abril, G. Richard, S. Guerin, F. 2006. In situ measurements of dissolved gases ( CO 2 and CH 4) in a wide range of concentrations in a tropical reservoir using an equilibrator., 354, 246–251. DOI: 10.1016/j.scitotenv.2004.12.051
Alerta Rio. 2018. Climatologia Mensal Rio. (Retrieved on from http://alertario.rio.rj.gov.br/documentos/climatologiamensal/).
Almeida, F. Carneiro, C. 1998. Origem e Evolução da Serra do Mar. Revista Brasileira de Geociências, 28(2), 135–150.
Amador, E. da S. 2012. Bacia da Baía de Guanabara: Características Geoambientais, Formação e Ecossistemas. Rio de Janeiro: Interciência. p. 432
Barcellos, D., Queiroz, H. M., Nóbrega, G. N., de Oliveira Filho, R. L., Santaella, S. T., Otero, X. L., & Ferreira, T. O. 2019. Phosphorus enriched effluents increase eutrophication risks for mangrove systems in northeastern Brazil. Marine Pollution Bulletin, 142, 58–63. DOI: 10.1016/j.marpolbul.2019.03.031
Biddanna, B., Ogdahl, M., Cotner, J. 2001. Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters. Limnology and Oceonography, 46, 730–739.
Borges, A. C., Sanders, C. J., Santos, H. L. R., Araripe, D. R., Machado, W., & Patchineelam, S. R. 2009. Eutrophication history of Guanabara Bay (SE Brazil) recorded by phosphorus flux to sediments from a degraded mangrove area. Marine Pollution Bulletin, 58(11), 1750–1754. DOI: 10.1016/j.marpolbul.2009.07.025
Borges, A. V, Djenidi, S., Lacroix, G., & The, J. 2003. Atmospheric CO 2 flux from mangrove surrounding waters. Geophysical Research Letters, 30(11), 12–15. DOI: 10.1029/2003GL017143
Bouillon, S., Frankignoulle, M., Dehairs, F., Velimirov, B., Eiler, A., Abril, G., Etcheber, H., & Borges, A. V. 2003. Inorganic and organic carbon biogeochemistry in the Gautami Godavari estuary (Andhra Pradesh, India) during pre-monsoon: The local impact of extensive mangrove forests. Global Biogeochemical Cycles, 17(4). DOI: 10.1029/2002gb002026
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C., Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M., Yasuhara, M., & Zhang, J. 2018. Declining oxygen in the global ocean and coastal waters. Science, 359(6371). DOI: 10.1126/science.aam7240
Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., Chou, W. C., Zhai, W., Hollibaugh, J. T., Wang, Y., Zhao, P., Guo, X., Gundersen, K., Dai, M., & Gong, G. C. 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience, 4(11), 766–770. DOI: 10.1038/ngeo1297
Carlson, R. E. 1977. A trophic state index for lakes. Limnology and Oceanography, 22(2), 361–369. DOI: 10.4319/lo.1977.22.2.0361
Carranzo, I. V. 2012. APHA, AWWA, WEF. “Standard Methods for examination of water and wastewater.” 5(2), 185–186. DOI: 10.5209/rev_ANHM.2012.v5.n2.40440
Cotovicz Jr, L. C. , B. A. Knoppers, N. Brandini, S. J. Costa Santos, and G. A. 2015. A strong CO2 sink enhanced by eutrophication in a tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil). Biogeosciences, 12(20), 6125–6146. DOI: 10.5194/bg-12-6125-2015
Cotovicz, L C., Knoppers, B. A., Brandini, N., Poirier, D., Costa Santos, S. J., Cordeiro, R. C., & Abril, G. 2017. Predominance of phytoplankton-derived dissolved and particulate organic carbon in a highly eutrophic tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil). Biogeochemistry, 137(1–2), 1–14. DOI: 10.1007/s10533-017-0405-y
Cotovicz, Luiz C., Knoppers, B. A., Brandini, N., Poirier, D., Costa Santos, S. J., & Abril, G. 2016. Spatio-temporal variability of methane (CH 4) concentrations and diffusive fluxes from a tropical coastal embayment surrounded by a large urban area (Guanabara Bay, Rio de Janeiro, Brazil). Limnology and Oceanography, 61(S1), S238–S252. DOI: 10.1002/lno.10298
Dai, M., Lu, Z., Zhai, W., Chen, B., Cao, Z., Zhou, K., Cai, W., & Chen, C. A. 2009. Diurnal variations of surface seawater p CO 2 in contrasting coastal environments. Limnology and Oceanography, 54(3), 735–745.
Dinauer, A., & Mucci, A. 2017. Spatial variability in surface-water pCO2 and gas exchange in the world’s largest semi-enclosed estuarine system: St. Lawrence Estuary (Canada). Biogeosciences, 14(13), 3221–3237. DOI: 10.5194/bg-14-3221-2017
Duarte, C. M., & Prairie, Y. T. 2005. Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems, 8(7), 862–870. DOI: 10.1007/s10021-005-0177-4
Else, B. G. T., Papakyriakou, T. N., Granskog, M. A., & Yackel, J. J. 2008. Observations of sea surface fCO2 distributions and estimated air-sea CO2 fluxes in the Hudson Bay region (Canada) during the open water season. Journal of Geophysical Research: Oceans, 113(8), 1–12. DOI: 10.1029/2007JC004389
Esteves, F. A., Scarano, F. G., Rocha, C. F. D. 2004. Pesquisa de Longa Duração na Restinga de Jurubatiba: Ecologia, História Natural e Conservação. 1 ed. Rio de Janeiro: RIMA Editora: p. 376.
Fistarol, G. O., Coutinho, F. H., Moreira, A. P. B., Venas, T., Cánovas, A., de Paula, S. E. M., Coutinho, R., de Moura, R. L., Valentin, J. L., Tenenbaum, D. R., Paranhos, R., do Valle, R. de A. B., Vicente, A. C. P., Amado Filho, G. M., Pereira, R. C., Kruger, R., Rezende, C. E., Thompson, C. C., Salomon, P. S., & Thompson, F. L. 2015. Environmental and sanitary conditions of Guanabara Bay, Rio de Janeiro. Frontiers in Microbiology, 6(NOV), 1–17. DOI: 10.3389/fmicb.2015.01232
Franco, A. S. 1992. Marés-programas para previsão e análise: Manual do Sistema PAC. São Paulo.
Frankignoulle, M., Borges, A., & Biondo, R. 2001. A new design of equilibrator to monitor carbon dioxide in highly dynamic and turbid environments. Water Research, 35(5), 1344–1347. DOI: 10.1016/S0043-1354(00)00369-9
Fries, A. S., Coimbra, J. P., Nemazie, D. A., Summers, R. M., Azevedo, J. P. S., Filoso, S., Newton, M., Gelli, G., de Oliveira, R. C. N., Pessoa, M. A. R., & Dennison, W. C. 2018. Guanabara Bay ecosystem health report card: Science, management, and governance implications. Regional Studies in Marine Science, 25, 100474. DOI: 10.1016/j.rsma.2018.100474
Gagliardi, L. M., Brighenti, L. S., Staehr, P. A., Barbosa, R., Bezerra-neto, F., & Anto, F. 2019. Reduced Rainfall Increases Metabolic Rates in Upper Mixed Layers of Tropical Lakes. Ecosystems. DOI: 10.1007/s10021-019-00346-0
Gao, G., Jin, P., Liu, N., Li, F., Tong, S., Hutchins, D. A., & Gao, K. 2017. The acclimation process of phytoplankton biomass, carbon fixation and respiration to the combined effects of elevated temperature and pCO 2 in the northern South China Sea. Marine Pollution Bulletin, 118(1–2), 213–220. DOI: 10.1016/j.marpolbul.2017.02.063
Garcia, H. E., & Gordon, L. I. 1992. Oxygen solubility in seawater: Better fitting equations. Limnology and Oceanography, 37(6), 1307–1312. DOI: 10.4319/lo.1992.37.6.1307
Gazeau, F., Duarte, C. M., Gattuso, J.-P., Barrón, C., Navarro, N., Ruíz, S., Prairie, Y. T., Calleja, M., Delille, B., Frankignoulle, M., & Borges, A. V. 2004. Whole-system metabolism and CO2 fluxes in a Mediterranean Bay dominated by seagrass beds (Palma Bay, NW Mediterranean). Biogeosciences Discussions, 1(1), 755–802. DOI: 10.5194/bgd-1-755-2004
Gómez-Rubio, V. 2017. ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) . Journal of Statistical Software, 77(Book Review 2), 2–5. DOI: 10.18637/jss.v077.b02
Grasshoff, K., K. K. & M. E. 1999. Methods of seawater analysis. Wiley, Weinheim, Germany. p. 632. DOI: 10.1016/0304-4203(78)90045-2
Guenther, M., Paranhos, R., Rezende, C. E., Gonzalez-Rodriguez, E., & Valentin, J. L. 2008. Dynamics of bacterial carbon metabolism at the entrance of a tropical eutrophic bay influenced by tidal oscillation. Aquatic Microbial Ecology, 50(2), 123–133. DOI: 10.3354/ame01154
Hanson, P. C., Bade, D. L., Carpenter, S. R., & Kratz, T. K. 2003. Lake metabolism: Relationships with dissolved organic carbon and phosphorus. Limnology and Oceanography, 48(3), 1112–1119. DOI: 10.4319/lo.2003.48.3.1112
Hoellein, T. J., Bruesewitz, D. A., & Richardson, D. C. 2013. Revisiting Odum (1956): A synthesis of aquatic ecosystem metabolism. Limnology and Oceanography, 58(6), 2089–2100. DOI: 10.4319/lo.2013.58.6.2089
Huntington, T. G., Balch, W. M., Aiken, G. R., Sheffield, J., Luo, L., Roesler, C. S., & Camill, P. 2016. Climate change and dissolved organic carbon export to the Gulf of Maine. Journal of Geophysical Research: Biogeosciences, 121(10), 2700–2716. DOI: 10.1002/2015JG003314
IBGE. 2010. CENSO DEMOGRÁFICO 2010. (Retrieved on from https://censo2010.ibge.gov.br/sinopse/index.php?uf=33&dados=0).
Inea. 2013. RESOLUÇÃO CERHI-RJ No 107 DE 22 DE MAIO DE 2013. pp. 49–50.
Jeffrey, L. C., Maher, D. T., Santos, I. R., Call, M., Reading, M. J., Holloway, C., & Tait, D. R. 2018. The spatial and temporal drivers of pCO2, pCH4 and gas transfer velocity within a subtropical estuary. Estuarine, Coastal and Shelf Science, 208, 83–95. DOI: 10.1016/j.ecss.2018.04.022
Jeffrey, S. W., & Humphrey, G. F. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie Und Physiologie Der Pflanzen, 167(2), 191–194. DOI: 10.1016/s0015-3796(17)30778-3
Jollife, I. T., & Cadima, J. 2016. Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065). DOI: 10.1098/rsta.2015.0202
Kjerfve, B., Ribeiro, C. H. A., Dias, G. T. M., Filippo, A. M., & Quaresma, V. da S. 1997. Oceanographic characteristics of an impacted coastal bay: Baia de Guanahara, Rio de Janeiro, Brazil. Continental Shelf Research, 17(13), 1609–1643. DOI: 10.1016/S0278-4343(97)00028-9
LaBuhn, Shelby. ; Val Klump, J. 2016. Estimating summertime epilimnetic primary production via in situ monitoring in an eutrophic freshwater embayment, Green Bay, Lake Michigan.Journal of Great Lakes Research. 42(5), 1026–1035 DOI: 10.1016/j.jglr.2016.07.028
Lamparelli, M. 2004. Graus de trofia em corpos d’água do Estado de São Paulo: Avaliação dos métodos de monitoramento. USP. p. 191.
Liu, Y., Jiao, J. J., & Liang, W. 2018. Tidal Fluctuation Influenced Physicochemical Parameter Dynamics in Coastal Groundwater Mixing Zone. Estuaries and Coasts, 41(4), 988–1001. DOI: 10.1007/s12237-017-0335-x
Mardia, K. V., J. T. Kent, and J. M. B. 1979. Multivariate Analysis. Academic Press, 15, 518.
Marotta, H. 2006. Os Fatores Reguladores Do Metabolismo Aquático E Sua Influência Sobre O Fluxo De Dióxido De Carbono Entre Os Lagos E a Atmosfera. Oecologia Brasiliensis, 10(02), 177–185. DOI: 10.4257/oeco.2006.1002.05
Marotta, H., Bento, L., Esteves, F., & Enrich-prast, A. 2009a. Whole Ecosystem Evidence of Eutrophication Enhancement by Wetland Dredging in a Shallow Tropical Lake. Estuaries and Coasts, 32, 654–660. DOI: 10.1007/s12237-009-9152-1
Marotta, H., Duarte, C. M., Meirelles-Pereira, F., Bento, L., Esteves, F. A., & Enrich-Prast, A. 2010a. Long-term CO2 variability in two shallow tropical lakes experiencing episodic eutrophication and acidification events. Ecosystems, 13(3), 382–392. DOI: 10.1007/s10021-010-9325-6
Marotta, H., Duarte, C. M., & Pinho, L. 2010b. Rainfall leads to increased p CO 2 in Brazilian coastal lakes. Biogeosciences, 1607–1614. DOI: 10.5194/bg-7-1607-2010
Marotta, H., Duarte, C. M., Sobek, S., & Enrich-Prast, A. 2009b. Large CO2 disequilibria in tropical lakes. Global Biogeochemical Cycles, 23(4), 12–15. DOI: 10.1029/2008GB003434
Muelbert, J. H., Nidzieko, N. J., Acosta, A. T. R., Beaulieu, S. E., Bernardino, A. F., Boikova, E., Bornman, T. G., Cataletto, B., Deneudt, K., Eliason, E., Kraberg, A., Nakaoka, M., Pugnetti, A., Ragueneau, O., Scharfe, M., Soltwedel, T., Sosik, H. M., Stanisci, A., Stefanova, K., Stéphan, P., Stier, A., Wikner, J., & Zingone, A. 2019. Ilter – the international long-term ecological research network as a platform for global coastal and ocean observation. Frontiers in Marine Science, 6, 1–14. DOI: 10.3389/fmars.2019.00527
Murrell, M. C., Caffrey, J. M., Marcovich, D. T., Beck, M. W., Jarvis, B. M., & Hagy, J. D. 2018. Seasonal Oxygen Dynamics in a Warm Temperate Estuary: Effects of Hydrologic Variability on Measurements of Primary Production, Respiration, and Net Metabolism. Estuaries and Coasts, 41(3), 690–707. DOI: 10.1007/s12237-017-0328-9
Obrador, B., Staehr, P. A., & Christensen, J. P. C. 2014. Vertical patterns of metabolism in three contrasting stratified lakes. Limnology and Oceanography, 59(4), 1228–1240. DOI: 10.4319/lo.2014.59.4.1228
Odum, H. T. 1956. Primary Production in Flowing Waters. Limnology and Oceanography, 1(2), 102–117. DOI: 10.4319/lo.1956.1.2.0102
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G.-K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka, Y., & Yool, A. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437(7059), 681–686. DOI: 10.1038/nature04095
Paerl, H. W., & Paul, V. J. 2012. Climate change: Links to global expansion of harmful cyanobacteria. Water Research, 46(5), 1349–1363. DOI: 10.1016/j.watres.2011.08.002
Paranhos, R, Pereira, A. P. & Mayr, L. M. 1998. Diel cariability of water quality in a tropical polluted bay. Environmental Monitoring and Assessment, (3), 131–141. DOI: 10.1023/A
Pedrosa, P. & Rezende, C. E. 2000. Dissolved Inorganic Carbon and Metabolism of an Eutrophic Lacustrine System : Variations from a 36-hours study. Revista Brasileira de Biologia, 60(4), 607–614.
Peel, M. C., Finlayson, B. L., & McMahon, T. A. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644. DOI: 10.5194/hess-11-1633-2007
Pinho, L., Duarte, C. M., Marotta, H., & Enrich-Prast, A. 2016. Temperature dependence of the relationship between pCO2 and dissolved organic carbon in lakes. Biogeosciences, 13(3), 865–871. DOI: 10.5194/bg-13-865-2016
R Core Team. 2013. R Project (R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing. DOI: 3-900051-07-0
Ram, A. S., Nair, S., & Chandramohan, D. 2003. Seasonal shift in net ecosystem production in a tropical estuary. Limnology and Oceanography, 48(4), 1601–1607. DOI: 10.4319/lo.2003.48.4.1601
Ribeiro, C. H. A., & Kjerfve, B. 2002. Anthropogenic influence on the water quality in Guanabara Bay, Rio de Janeiro, Brazil. Journal of Material Cycles and Waste Management, 3(1–3), 13–19. DOI: 10.1007/s10113-001-0037-5
Robbins, L. L., Hansen, M. E., Kleypas, J. A., & Meylan, S. C. 2010. CO2calc—A user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone). U.S. Geological Survey - File Report, 1280.
Rosenberg, D. &. 2008. Spreading Dead Zones and Consequences for Marine Ecosystems. Science, 321(5891), 926–929. DOI: 10.1126/science.1156401
Sampaio, M. 2003. Estudo de Circulação Hidrodinâmica 3D e Trocas de Massas D’água da Baía de Guanabara – RJ. Master thesis. Universidade Federal do Rio de Janeiro. Rio de Janeiro - RJ.
Sawabini, A. M., Schlezinger, D. R., Sundermeyer, M. A., & Howes, B. L. 2015. Regional Forcing by Light on Dissolved Oxygen Levels in Shallow Temperate Estuaries. Estuaries and Coasts, 38(3), 1062–1076. DOI: 10.1007/s12237-014-9879-1
Selvam, V., Hariprasad, V., Mohan, R., & Ramasubramanian, R. 1994. Diurnal variations in the water quality of sewage polluted Adyar mangrove water, east coast of India. Indian Journal of Marine Sciences, 23(2), 94–97.
Staehr, P. A., Baastrup-Spohr, L., Sand-Jensen, K., & Stedmon, C. 2012. Lake metabolism scales with lake morphometry and catchment conditions. Aquatic Sciences, 74(1), 155–169. DOI: 10.1007/s00027-011-0207-6
Staehr, P. A., & Sand-Jensen, K. 2007. Temporal dynamics and regulation of lake metabolism. Limnology and Oceanography, 52(1), 108–120. DOI: 10.4319/lo.2007.52.1.0108
Tosic, M., Restrepo, J. D., Izquierdo, A., Lonin, S., Martins, F., & Escobar, R. 2018. An integrated approach for the assessment of land-based pollution loads in the coastal zone. Estuarine, Coastal and Shelf Science, 211, 217–226. DOI: 10.1016/j.ecss.2017.08.035
Vincent Q. Vu. 2011. ggbiplot: A ggplot2 based biplot. R package version 0.55.
Weiss, R. F. 1974. Carbon Dioxide in water and Seawater: the Solubility of a Non-Ideal Gas. Clinical Chemistry, 23(6), 203–215.
Weiss, R. F., Price, B. A., Canada, E., R., Hutchinson, P., Jayasundara, G. L., & Wagner-Riddle, C. 1980. Nitrous Oxide Solubility in Water and Seawater. Agricultural Systems, 8(47), 247–286. DOI: 10.1017/CBO9781107415324.004
Wood, S. A., Borges, H., Puddick, J., Biessy, L., Atalah, J., Hawes, I., Dietrich, D. R., & Hamilton, D. P. 2017. Contrasting cyanobacterial communities and microcystin concentrations in summers with extreme weather events: insights into potential effects of climate change. Hydrobiologia, 785(1), 71–89. DOI: 10.1007/s10750-016-2904-6
Xu, Y. J., Xu, Z., & Yang, R. 2019. Rapid daily change in surface water pCO 2 and CO 2 evasion: A case study in a subtropical eutrophic lake in Southern USA. Journal of Hydrology, 570, 486–494. DOI: 10.1016/j.jhydrol.2019.01.016
Yang, W.-B., Yuan, C.-S., Tong, C., Yang, P., Yang, L., & Huang, B. Q. 2017. Diurnal variation of CO2, CH4, and N2O emission fluxes continuously monitored in-situ in three environmental habitats in a subtropical estuarine wetland. Marine Pollution Bulletin. 119(1), 289–298. DOI: 10.1016/j.marpollbull.2017.04.005
Downloads
Additional Files
- Carta de Submissão (Português (Brasil))
- Figure 2 (Português (Brasil))
- Figura1 (Português (Brasil))
- Figure 3 (Português (Brasil))
- Figure 4 (Português (Brasil))
- Figure 5 (Português (Brasil))
- (Português (Brasil))
- (Português (Brasil))
- (Português (Brasil))
- (Português (Brasil))
- Biomonitoramento Continuo de Aguas do PELD-Baia de Guanabara Intensa Variacao Nictemeral de Gases Metabolicos na Condicao Eutrofica Tropical___Marotta (Português (Brasil))
- Figura 5 (Português (Brasil))