ECOLOGY OF AQUATIC MACROPHYTES IN BRAZIL: THE LEGACY OF FRANCISCO DE ASSIS ESTEVES

Authors

  • Sidinei Magela Thomaz
  • Priscilla Carvalho
  • Roger Paulo Mormul
  • Renata Ruaro
  • André Andrian Padial
  • Elena Galvanese
  • Luis Mauricio Bini

Abstract

In this review, we evaluate the contribution of Brazilian limnologists to research outputs on aquatic macrophyte ecology. We found a strong “adviser effect” of Professor F.A. Esteves on the Brazilian scientific production focused on aquatic macrophytes. In general, articles focused on a variety of themes, including, inter alia, the role of aquatic macrophytes on the biodiversity of other groups, the interaction between macrophytes and the environment, the effects of environmental factors on aquatic macrophytes distribution and biodiversity, the effects of invasive species on aquatic biodiversity, aquatic macrophytes control and decomposition. Emerging topics (e.g., metacommunity ecology, biodiversity-ecosystem functioning, and patterns of diversity and their determinants) are being embraced by Brazilian limnologists that use aquatic macrophytes as organism models. Despite the fact there is much to study, we think that directly (e.g., via mentoring) or indirectly (via publications), our current knowledge about macrophytes ecology was inspired by Chico Esteves.

References

Afzal, M., Arslan, M., Müller, J. A., Shabir, G., Islam, E., Tahseen, R., Anwarul-Haq, M., Hashmat, A. J., Iqbal, S., & Khan Q. M. 2019. Floating treatment wetlands as a suitable option for large-scale wastewater treatment. Nature Sustainability, 2(9), 863–871.

Agostinho, A. A., Gomes, L.C., & Júlio Jr, H. F. 2003. Relações entre macrófitas e fauna de peixes. In: S. M. Thomaz & L. M. Bini (Eds.), Ecologia e manejo de macrófitas aquáticas. pp. 261–279. Maringá: EDUEM.

Alahuhta, J., Kosten, S., Akasaka, M., Auderset, D., Azzella, M. M., Bolpagni, R., Bove, C. P., Chambers, P. A., Chappuis, E., Clayton, J., de Winton, M., Ecke, F., Gacia, E., Gecheva, G., Grillas, P. H., J.,Hellsten, S., Hjort, J., Hoyer, M. V., Ilg, C., Kolada, A., Kuoppala, M., Lauridsen, T., Li, E. H., Lukacs, B. A., Mjelde, M., Mikulyuk, A., Mormul, R. P., Nishihiro, J., Oertli, B., Rhazi, L., Rhazi, M., Sass, L., Schranz, C., Sondergaard, M., Yamanouchi, T., Yu, Q., Wang, H., Willby, N., Zhang, X. K., & Heino, J. 2019. Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. Journal of Biogeography, 44(8), 1758–1769.

Alves, J. M., Caliman, A., Guariento, R. D., Figueiredo-Barros, M. P., Carneiro, L. S., Farjalla, V. F., Bozelli, R. L., & Esteves, F. A. 2010. Stoichiometry of benthic invertebrate nutrient recycling: interspecific variation and the role of body mass. Aquatic Ecology, 44 (2), 421–430.

Alves, R. M. A., Albuquerque, M. B., & Barbosa, L. G. 2017. Status of the invasion of a Poaceae species in tropical semi-arid reservoirs. Planta Daninha, 35, e017153224.

Amorim, S. R., Umetsu, C. A., & Camargo, A. F. M. 2015. Effects of a non-native species of Poaceae on aquatic macrophyte community composition: a comparison with a native species. Journal of Aquatic Plant Management, 53, 191–196.

Arens, K. 1946. Contribuição para o conhecimento das incrustações calcáreas de Nitella. Boletim do Museu Nacional do Rio de Janeiro. Série Botânica, Rio de Janeiro, 5, 1–16.

Barbieri, R., Esteves, F. A., & Reid, J. W. 1984. Contribution of two aquatic macrophytes to the nutrient budget of Lobo Reservoir, São Paulo, Brazil. Internationale Vereinigung für Theoretische und Angewandte Limnologie: Verhandlungen, 22, 1631–1635.

Bauer, L. H., Arenzon, A., Molle, N. D., Rigotti, J. A., Borges, A. C. A., Machado, N. R., & Rodrigues, L. H. R. 2021. Floating treatment wetland for nutrient removal and acute ecotoxicity improvement of untreated urban wastewater. International Journal of Environmental Science and Technology, 18, 3697–3710.

Bento, L., Marotta, H., & Enrich-Prast, A. 2007. O papel das macrófitas aquáticas emersas no ciclo do Fósforo em lagos rasos. Oecologia Brasiliensis, 11, 582–589.

Bianchini Jr, I., Cunha-Santino, M. B., Milan, J. A. M., Rodrigues, C. J., & Dias, J. H. P. 2015. Model parameterization for the growth of three submerged aquatic macrophytes. Journal of Aquatic Plant Management, 53, 64–73.

Bini, L. M., Thomaz, S. M., Murphy, K. J., & Camargo, A.F.M. 1999. Aquatic macrophyte distribution in relation to water and sediment conditions in the Itaipu Reservoir, Brazil. Hydrobiologia, 415, 147–154.

Bini, L. M., Thomaz, S. M., & Carvalho, P. 2010. Limnological effects of Egeria najas Planchon (Hydrocharitaceae) in the arms of Itaipu Reservoir (Brazil, Paraguay). Limnology, 11(1), 39–47.

Bora, L. S., Thomaz, S. M., & Padial, A. A. 2020. Evidence of rapid evolution of an invasive Poaceae in response to salinity, Aquatic Sciences, 82(4), 76.

Boschilia, S. M., Oliveira, E. F., & Schwarzbold, A. 2016. Partitioning beta diversity of aquatic macrophyte assemblages in a large subtropical reservoir: prevalence of turnover or nestedness? Aquatic Sciences, 78(3), 615–625.

Boschilia, S. M., Oliveira, E. F., & Thomaz, S. M. 2008. Do aquatic macrophytes co-occur randomly? An analysis of null models in a tropical floodplain. Oecologia, 156(1), 203–214.

Bottino, F., Milan, J. A. M., Cunha-Santino, M. B., & Bianchini, Jr, I. 2017. Influence of the residue from an iron mining dam in the growth of two macrophyte species. Chemosphere, 186, 488–494.

Caliman, A., Carneiro, L. S., Bozelli, R. L., Farjalla, V. F., & Esteves, F. A. 2011. Bioturbating space enhances the effects of non‐additive interactions among benthic ecosystem engineers on cross‐habitat nutrient regeneration. Oikos, 120 (11), 1639–1648.

Caliman, A., Carneiro, L. S., Leal, J. J. F., Farjalla, V. F., Bozelli, R. L., & Esteves, F. A. 2013. Biodiversity effects of benthic ecosystem engineers on the spatial patterns of sediment CH4 concentration in an urban Neotropical coastal lagoon. Acta Limnologica Brasiliensia, 25 (3), 302–314.

Callisto, M., Moreno, P., Gonçalves Jr, J. F., Leal, J. J. F., & Esteves, F. A. 2002. Diversity and biomass of Chironomidae (Diptera) larvae in an impacted coastal lagoon in Rio de Janeiro, Brazil. Brazilian Journal of Biology, 62 (1), 77–84.

Calvo, C., Mormul, R. P., Figueiredo, B. R. S., Cunha, E. R., Thomaz, S. M., & Meerhoff, M. 2019. Herbivory can mitigate, but not counteract, the positive effects of warming on the establishment of the invasive macrophyte Hydrilla verticillata. Biological Invasions, 21, 59–66.

Camargo, A. F. M., & Esteves, F. A. 1996. Influence of water level variation on biomass and chemical composition of the aquatic macrophyte Eichhornia azurea (Kunth) in an oxbow lake of the Rio Mogi-Guacu (São Paulo, Brazil). Archiv Fur Hydrobiologie, 135, 423–432.

Carniatto, N., Thomaz, S. M., Cunha, E. R., Fugi, R., & Ota, R. R. 2013. Effects of an invasive alien Poaceae on aquatic macrophytes and fish communities in a Neotropical reservoir. Biotropica, 45, 747–754.

Catian, G., Silva, D. M., Suarez, Y. R., & Scremin-Dias, E. 2018. Effects of flood pulse dynamics on functional diversity of macrophyte communities in the Pantanal wetland. Wetlands, 38(5), 975–991.

Chambers, P. A., Lacoul, P., Murphy, K. J., & Thomaz, S. M. 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia, 595, 9–26.

Colares, G. S., Dell'Osbel N., Wiesel, P. G., Oliveira, G. A., Lemos, P. H. Z., Silva, F. P., Lutterbeck, C. A., Kist, L. T., & Machado, E. L. 2020. Floating treatment wetlands: A review and bibliometric analysis. Science of the Total Environment, 714, 136776.

Cook, C. D. K. 1993. Origin, autoecology, and spread of some of the world's most troublesome aquatic weeds. In: A. H. Pieterse & J. K. Murphy (Eds.), Aquatic weeds: the ecology and management of nuisance aquatic vegetation. Oxford: Oxford University Press.

Cunha, E. R., Thomaz, S. M., Evangelista, H. B. A., Carniato, J., Souza, C. F., & Fugi R. 2011. Small-sized fish assemblages do not differ between a native and a recently established non-indigenous macrophyte in a Neotropical ecosystem. Natureza & Conservação, 9(1), 61–66.

Cunha, E. R., Thomaz, S. M., Mormul, R. P., Cafofo, E. G., & Bonaldo, A. B. 2012. Macrophyte structural complexity influences spider assemblage attributes in wetlands. Wetlands, 32, 369–377.

da Silva, C. J., & Esteves, F. A. 1993. Biomass of three macrophytes in the Pantanal of the Mato Grosso, Brazil. International Journal of Ecology and Environmental Sciences, 19, 11–23.

de Castro, W. A. C., de Almeira, R. V., Xavier, R. O., Arduin, M., Moya, A. H., Matos, D. M. S. 2021. Response of rhizomes of the invasive Hedychium coronarium J. König (Zingiberaceae) to different soil moisture conditions. Acta Botanica Brasilica, 122–125.

de Castro, W. A. C., de Almeira, R. V., Xavier, R. O., Bianchini, I., Moya, H., & Matos, D. M. S. 2020. Litter accumulation and biomass dynamics in riparian zones in tropical South America of the Asian invasive plant Hedychium coronarium J. König (Zingiberaceae). Plant Ecology & Diversity, 13, 47–59.

Demarco, C. F., Afonso, T. F., Pieniz, S., Quadro, M. S., de Oliveira Camargo, F. A., & Andreazza, R. 2020. Evaluation of Enydra anagallis remediation at a contaminated watercourse in south Brazil. International Journal of Phytoremediation, 22, 1216–1223.

Dias, R. M., da Silva, J. C. B., Gomes, L. C., & Agostinho, A. A. 2017. Effects of macrophyte complexity and hydrometric level on fish assemblages in a Neotropical floodplain. Environmental Biology of Fishes, 100(6), 703–716.

Dibble, E. D. P., & Pelicice F. M. 2010. Influence of aquatic plant-specific habitat on an assemblage of small neotropical floodplain fishes. Ecology of Freshwater Fish, 19, 381–389.

dos Santos, A. M., Esteves, F. A. 2004. Influence of water level fluctuation on the mortality and aboveground biomass of the aquatic macrophyte Eleocharis interstincta (VAHL) Roemer et Schults. Brazilian Archives of Biology and Technology, 47, 281–290.

dos Santos, T. R., Ferragut, C., & Bicudo, C. E. M. 2013. Does macrophyte architecture influence periphyton? Relationships among Utricularia foliosa, periphyton assemblage structure and its nutrient (C, N, P) status. Hydrobiologia, 714, 71–83.

dos Santos, N. G., Stephan, L. R., Otero, A., Iglesias, C., & Castilho- Noll, M. S. M. 2020. How free-floating macrophytes influence interactions between planktivorous fish and zooplankton in tropical environments? An in-lake mesocosm approach. Hydrobiologia, 847, 1357–1370.

Elton, C. S. 1958. The Ecology of Invasions by Animals and Plants. London: Methuen: p. 181.

Esteves, F. A. 1979. Die Bedeutung der aquatischen Makrophyten für den Stoffhaushalt des Schöhsees. I. Die Produktion an Biomasse. Arch. Hydrobiol./Suppl 57(2), 117–143.

Esteves, F. A. 1998. Fundamentos de limnologia. Rio de Janeiro: Interciência: p. 602.

Esteves, F. A. 2011. Fundamentos de Limnologia. Rio de Janeiro: Interciência: p. 826.

Esteves, F. A., & Barbieri, R. 1983. Dry-weight and chemical-changes during decomposition of tropical macrophytes in Lobo Reservoir Sao-Paulo, Brazil. Aquatic Botany, 16(3), 285–295.

Fares, A. L. B., Nonato, F. A. S., & Michelan, T. S. 2020. New records of the invasive macrophyte, Urochloa arrecta extend its range to eastern Brazilian Amazon altered freshwater ecosystems. Acta Amazonica, 50, 133–137.

Fasoli, J. V., Michelan, T. S., & Thomaz, S. M. 2015. Sediment composition mediates the invasibility of aquatic ecosystems by a non-native Poaceae species. Acta Limnologica Brasiliensia, 27(2), 165–170.

Fasoli, J. V. B., Mormul, R. P., Cunha, E. R., & Thomaz, S. M. 2018. Plasticity responses of an invasive macrophyte species to inorganic carbon availability and to the interaction with a native species. Hydrobiologia, 817, 227–237.

Fernandes, F. L. G., Teixeira, M. C., & Thomaz, S. M. 2013. Diversity and biomass of native macrophytes are negatively related to dominance of an invasive Poaceae in Brazilian sub-tropical streams. Acta Limnologica Brasiliensia, 25, 202–209.

Ferreira, C. M. L., & Esteves, F. A. 1992. Decomposition of Potamogeton stenostachys K. Schum. and evaluation of its detritus as a potential energy source in a tropical coastal lagoon. International Journal of Ecology and Environmental Sciences, 18, 47–54.

Ferreira, T. F., Crossetti, L. O., Marques, D. M. M., Cardoso, L., Fragoso Jr, C. R., & van Nes, E. H. 2018. The structuring role of submerged macrophytes in a large subtropical shallow lake: Clear effects on water chemistry and phytoplankton structure community along a vegetated-pelagic gradient. Limnologica, 69, 142–154.

Figueiredo, B. R. S., Mormul, P. R., & Thomaz, S. M. 2015. Swimming and hiding regardless of the habitat: prey fishdo not choose between a native and a non-native macrophyte species as a refuge. Hydrobiologia, 746, 285–290.

Fonseca, A. L. S., Marinho, C. C., & Esteves, F. A. 2015. Aquatic macrophytes detritus quality and sulfate availability shape the methane production pattern in a dystrophic coastal lagoon. American Journal of Plant Sciences, 6, 1675–1684.

Fonseca, A. L. S., Marinho, C. C., & Esteves, F. A. 2017. floating aquatic macrophytes decrease the methane concentration in the water column of a tropical coastal lagoon: implications for methane oxidation and emission. Brazilian Archives of Biology and Technology, 60, e160381.

Forini, M. M. L., Antunes, D. R., Cavalcante, L. A. F., Pontes, M. S., Biscalchim, E. R., Sanches, A. O., Santiago, E. F., Fraceto, L. F., & Grillo, R. 2020. Fabrication and characterization of a novel herbicide delivery system with magnetic collectability and its phytotoxic effect on photosystem ii of aquatic macrophyte. Journal of Agricultural and Food Chemistry, 68, 11105–11113.

García-Girón, J., Heino, J., Baastrup-Spohr, L., Bove, C. P., Clayton, J., de Winton, M., Feldmann, T., Fernandez-Alaez, M., Ecke, F., Grillas, P., Hoyer, M.V., Kolada, A., Kosten, S., Lukacs, B. A., Mjelde, M., Mormul, R. P., Rhazi, L., Rhazi, M., Sass, L., Xu, J., & Alahuhta, J. 2020a. Global patterns and determinants of lake macrophyte taxonomic, functional and phylogenetic beta diversity. Science of The Total Environment, 723, e138021.

García-Girón, J., Heino, J., Baastrup-Spohr, L., Clayton, J., de Winton, M., Feldmann, T., Fernandez-Alaez, C., Ecke, F., Hoyer, M. V., Kolada, A., Kosten, S., Lukacs, B. A., Mormul, R. P., Rhazi, L., Rhazi, M., Sass, L., Xu, J., & Alahuhta, J. 2020b. Elements of lake macrophyte metacommunity structure: Global variation and community-environment relationships. Limnology and Oceanography, 65, 2883–2895.

Gentilin-Avanci, C., Pinha, G. D., Petsch, D. K., Mormul, R. P., & Thomaz, S. M. 2021. The invasive macrophyte Hydrilla verticillata causes taxonomic and functional homogenization of associated Chironomidae community. Limnology, 22 (1), 129–138.

Gonçalves Jr, J. F., Santos, A. M., & Esteves, F. A. 2004. The influence of the chemical composition of Typha domingensis and Nymphaea ampla detritus on invertebrate colonization during decomposition in a Brazilian coastal lagoon. Hydrobiologia, 527, 125–137.

Grimaldo, J. T., Bini, L. M., Landeiro, V. L., O'Hare, M. T., Caffrey, J., Spink, A., Martins, S. V., Kennedy, M. P., & Murphy, K. J. 2016. Spatial and environmental drivers of macrophyte diversity and community composition in temperate and tropical calcareous rivers. Aquatic Botany, 132, 49–61.

Guariento, R. D., Carneiro, L. S., Caliman, A., Bozelli, R. L., Leal, J. J. F., & Esteves, F. A. 2010. Interactive effects of omnivorous fish and nutrient loading on net productivity regulation of phytoplankton and periphyton. Aquatic Biology, 10 (3), 273–282.

Henriques, R. P. B., Araújo, D. S. D., Esteves, F. A., & Franco, A. C. 1988. Análise preliminar das comunidades de macrófitas aquáticas da lagoa Cabiúnas, Rio de Janeiro, Brasil. Acta Limnologica Brasiliensia, 2, 783–802.

Henry-Silva, G. G., & Camargo, A. F. M. 2006. Efficiency of aquatic macrophytes to treat Nile tilapia pond effluents. Scientia Agricola, 63(5), 433–438.

Henry-Silva, G., Camargo, A. F. M., & Pezzato, M. M. 2008. Growth of free-floating aquatic macrophytes in different concentrations of nutrients. Hydrobiologia, 610, 153–160.

Hoehne, F. C. 1948. Plantas aquáticas. São Paulo: Instituto de Botânica (reimpressão de 1979). p. 168.

Howard-Williams C., & Junk, W. J. 1977. The chemical composition of Central Amazonian aquatic macrophytes with special reference to their role in the ecosystem. Archiv für Hydrobiologie, 79(4), 446–464.

Junk, W. J. 1982. Zur entwicklung aquatischer makrophyten in Curuá-Una, dem ersten stausee in Zentralamazonien. Archiv für Hydrobiologie, 95, 169–180.

Kobayashi, J. T., Thomaz, S. M., & Pelicice, F. M. 2008. Phosphorus as a limiting factor for Eichhornia crassipes growth in the upper Paraná River floodplain. Wetlands, 28 (4), 905–913.

Lockwood, J., Cassey, P., & Blackburn, T. 2005. The role of propagule pressure in explaining species invasions. Trends in Ecology and Evolution, 20, 223–228.

Lolis, L. A., Alves, D. C., Fan, S., Lv, T., Yang, L., Li, Y., Liu, C., Yu, D., & Thomaz, S. M. 2020. Negative correlations between native macrophyte diversity and water hyacinth abundance are stronger in its introduced than in its native range. Diversity and Distributions, 262, 242–253.

Louback-Franco, N., Dainez-Filho, M. S., Souza, D. C., & Thomaz, S. M. 2018. A native species does not prevent the colonization success of an introduced submerged macrophyte, even at low propagule pressure. Hydrobiologia, 847, 1619–1629.

Maltchik, L., & Pedro, F. 2001. Responses of aquatic macrophytes to disturbance by flash floods in a Brazilian semiarid intermittent stream. Biotropica, 33, 566–572.

Marcondes, D. A. S., Mustafá, A. L., & Tanaka, R. H. 2003. Estudos para manejo integrado de plantas aquáticas no reservatório de Jupiá. In: S. M. Thomaz & L. M. Bini (Org.), Ecologia e manejo de macrófitas. pp. 299–317. Maringá: EDUEM.

Marinho, C. C., Meirelles-Pereira, F., Gripp, A. R., Guimarães, C. C., Esteves, F. A., & Bozelli, R. L. 2010. Aquatic macrophytes drive sediment stoichiometry and the suspended particulate organic carbon composition of a tropical coastal lagoon. Acta Limnologica Brasiliensia, 22, 208–217.

Melo, S., Bozelli, R. L., & Esteves, F. A. 2007. Temporal and spatial fluctuations of phytoplankton in a tropical coastal lagoon, southeast Brazil. Brazilian Journal of Biology, 67 (3), 475–483.

Melo, A., Bini, L. M., & Carvalho, P. 2006. Brazilian articles in international journals on Limnology. Scientometrics, 67 (2), 187–199.

Menezes, C. F. S., Esteves, F. A., & Anesio, A. M. 1993. Influência da variação artificial do nível d’água da represa do Lobo (SP) sobre a biomassa e produtividade de Nymphoides indica (L.) O. Kuntze e Pontederia cordata L. Acta Limnologica Brasiliensia, 6 (1), 163–172.

Michelan, T. S., Thomaz, S. M., Mormul, R. P., & Carvalho. 2010. Effects of an exotic invasive macrophyte (tropical signalgrass) on native plant community composition, species richness and functional diversity. Freshwater Biology, 55, 1315–1326.

Michelan, T. S., Thomaz, S. M., & Bini, L. M. 2013. Native macrophyte density and richness affect the invasiveness of a tropical Poaceae species. Plos One, 8(3), e60004.

Michelan, T. S., Dainez-Filho, M. S., & Thomaz, S. M. 2018. Aquatic macrophyte mats as dispersers of one invasive plant species. Brazilian Journal of Biology, 78, 169–171.

Millenium Ecosystem Assessment Panel. 2005. Ecosystems and Human Well-Being: Synthesis. Millenium Ecosystem Assessment Series. Washington, DC: Island Press. p. 137.

Moi, D. A., Evangelista, H. B. A., Mormul, R. P., Evangelista, L. R., & Thomaz, S. M. 2021a. Ecosystem multifunctionality and stability are enhanced by macrophyte richness in mesocosms. Aquatic Sciences, 83(3), 53.

Moi, D. A., Alves, D. C., Antiqueira, P. A. P., Thomaz, S. M., Teixeira-de-Mello, F., Bonecker, C. C., Rodrigues, L. C., García-Ríos, R., & Mormul, R. P. 2021b. Ecosystem shift from submerged to floating plants simplifying the food web in a tropical shallow lake. Ecosystems, 24, 628–639.

Monção, F. S., dos Santos, A. M., & Bini, L. M. 2012. Aquatic macrophyte traits and habitat utilization in the Upper Parana River floodplain, Brazil. Aquatic Botany, 102, 50–55.

Mormul, R. P., Ferreira, F. A., Michelan, T. S., Carvalho, P., Silveira, M. J., & Thomaz, S. M. 2010. Aquatic macrophytes in the large, sub-tropical Itaipu Reservoir, Brazil. Revista de Biologia Tropical, 58(4), 1437–1451.

Mormul, R. P., Ahlgren, J., Ekvall, M. K., Hansson, L. A., & Brönmark, C. 2012. Water brownification may increase the invasibility of a submerged non-native macrophyte. Biological Invasions, 14(10), 2091–2099.

Mormul, R. P., Esteves, F. A., Farjalla, V. F., & Bozelli, R. L. 2015. Space and seasonality effects on the aquatic macrophyte community of temporary Neotropical upland lakes. Aquatic Botany, 126, 54–59.

Mormul, R. P., Thomaz, S. M., & Jeppesen, E. 2020. Do interactions between eutrophication and CO2 enrichment increase the potential of elodeid invasion in tropical lakes? Biological Invasions, 22, 2787–2795.

Moura-Júnior, E. G., Pott, A., Severi, W., & Zickel, C. S. 2019. Response of aquatic macrophyte biomass to limnological changes under water level fluctuation in tropical reservoirs. Brazilian Journal of Biology, 79, 120–126.

Moura-Júnior, E. G., Severi, W., Kamino, L. H. Y., & de Lemos-Filho, J. P. 2020. To what degree do spatial and limnological predictors explain the occurrence of a submerged macrophyte species in lotic and semi-lotic/lentic environments of a dammed river? Limnology, 22(1), 101–110.

Murphy, K., Efremov, A., Davidson, T. A., Molina-Navarro, E., Fidanza, K., Crivelari Betiol, T. C., Chambers, P., Grimaldo, J. T., Martins, S. V., Springuel, I., Kennedy, M., Mormul, R. P., Dibble, E., Hofstra, D., Lukacs, B. A., Gebler, D., Baastrup-Spohr, L., & Urrutia-Estrada, J. 2019. World distribution, diversity and endemism of aquatic macrophytes. Aquatic Botany, 158, e103127.

Murphy, K. J., Carvalho, P., Efremov, A., Grimaldo, J. T., Molina-Navarro, E., Davidson, T. A., & Thomaz, S. M. 2020. Latitudinal variation in global range-size of aquatic macrophyte species shows evidence for a Rapoport effect. Freshwater Biology, 65(9), 1662–1640.

Nogueira, F. M. B., & Esteves, F. A. 1990. Variação temporal da biomassa de duas espécies de macrófitas aquáticas em uma lagoa marginal do rio Mogi-Guaçu (SP). Acta Limnologica Brasiliensia, 3(2), 617–632.

Noleto, E. V., Barbosa, M. V. M., & Pelicice, F. M. 2019. Distribution of aquatic macrophytes along depth gradients in Lajeado Reservoir, Tocantins River, Brazil. Acta Limnologica Brasiliensia, 31, e6.

Nunes, L. S. C., & Camargo, A. F. M. 2020. Effects of salinity on growth, competitive interaction and total nitrogen content of two estuarine macrophyte species cultivated on artificial substrate. Aquatic Ecology, 54, 973–983.

Oliveira, L. S., Cajado, R. A., Santos, L. R. B., Suzuki, M. A. L., & Zacardi, D. M. 2020. Bancos de macrófitas aquáticas como locais de desenvolvimento das fases iniciais de peixes em várzea do Baixo Amazonas. Oecologia Australis, 24, 644–660.

Padial, A. A., Bini, L. M., & Thomaz, S. M. 2008. The study of aquatic macrophytes in Neotropics: a scientometrical view of the main trends and gaps. Brazilian Journal of Biology, 68(4), 1051–1059.

Padial, A. A., Thomaz, S. M., & Agostinho, A. A. 2009. Effects of structural heterogeneity provided by the floating macrophyte Eichhornia azurea on the predation efficiency and habitat use of the small Neotropical fish Moenkhausia sanctaefilomenae. Hydrobiologia, 624, 161–170.

Padial, A. A., Ceschin, F., Declerck, S. A. J., De Meester, L., Bonecker, C. C., Lansac-Tôha, F. A., Rodrigues, L. C., Train, S., Velho, L. F. M., & Bini, L. M. 2014. Dispersal Ability Determines the Role of Environmental, Spatial and Temporal Drivers of Metacommunity Structure. Plos One, 9(10), e111227.

Palma-Silva, C., Albertoni, E. F., & Esteves, F. A. 2000. Eleocharis mutata (L.) Roem. et Schult. subject to drawdowns in a tropical coastal lagoon, State of Rio de Janeiro, Brazil. Plant Ecology, 148 (2), 157–164.

Pedro, F., Maltchik, L., & Bianchini Jr, I. 2006. Hydrologic cycle and dynamics of aquatic macrophytes in two intermittent rivers of the semi-arid region of Brazil. Brazilian Journal of Biology, 66, 575–585.

Pelicice, F. M., Thomaz, S. M., & Agostinho, A. A. 2008. Simple relationships to predict attributes of fish assemblages in patches of submerged macrophytes. Neotropical Ichthyology, 6, 543–550.

Pezzato, M. M., & Camargo, A. F. M. 2004. Photosynthetic rate of the aquatic macrophyte Egeria densa Planch. (Hydrocharitaceae) in two rivers from the Itanhaem River Basin in Sao Paulo State, Brazil. Brazilian Archives of Biology and Technology, 47, 153–162.

Pierini, S. A., & Thomaz, S. M. 2004. Effects of inorganic carbon source on photosynthetic rates of Egeria najas Planchon and Egeria densa Planchon (Hydrocharitaceae). Aquatic Botany, 78, 135–146.

Pontes, M. S., Grillo, R., Graciano, D. E., Falco, W. F., Lima, S. M., Caires, A. R. L., Andrade, L. H. C., & Santiago, E. F. 2019. How does aquatic macrophyte Salvinia auriculata respond to nanoceria upon an increased CO2 source? A Fourier transform-infrared photoacoustic spectroscopy and chlorophyll a fluorescence study. Ecotoxicology and Environmental Safety, 180, 526–534.

Pott, V.J., Pott, A., Lima, L.C.P., Moreira, S.N., & Oliveira, A.K.M. 2011. Aquatic macrophyte diversity of the Pantanal wetland and upper basin. Brazilian Journal of Biology, 71, 255–263.

Pozzobom, U. M., Heino, J., da Silva Brito, M.T., & Landeiro, V. L. 2020. Untangling the determinants of macrophyte beta diversity in tropical floodplain lakes: insights from ecological uniqueness and species contributions. Aquatic Sciences, 82(3), 56.

Pulzatto, M. M., Cunha, E. R., Dainez-Filho, M. S., & Thomaz, S. M. 2019. Association between the success of an invasive macrophyte, environmental variables and abundance of a competing native macrophyte. Frontiers in Plant Science, 10, e514.

Quirino, B. A., Teixeira-de Mello, F., Deosti, S., Bonecker, C. C., Cardozo, A. L. P, Yofukuji, K. Y., Aleixo, M. H. F., & Fugi, R. 2021. Interactions between a planktivorous fish and planktonic microcrustaceans mediated by the biomass of aquatic macrophytes. Journal of Plankton Research, 43, 46–60.

Ribas, L. G. S., Cássia-Silva, C., Petsch, D. K., Silveira, M. J., & Lima-Ribeiro, M. S. 2018. The potential invasiveness of an aquatic macrophyte reflects founder effects from native niche. Biological Invasions, 20, 3347–3355.

Ribeiro, J. P. N., Saggio, A., & Salgueiro Lima, M. I. 2013. The effects of artificial sandbar breaching on the macrophyte communities of an intermittently open estuary. Estuarine Coastal and Shelf Science, 121, 33–39.

Ribeiro, V. H. V., Alencar, B. T. B., Santos, N. M. C., Costa, V. A. M., Santos, J. B., Francino, D. M. T., Souza, M. F., & Silva, D. V. 2019. Sensitivity of the macrophytes Pistia stratiotes and Eichhornia crassipes to hexazinone and dissipation of this pesticide in aquatic ecosystems. Ecotoxicology and Environmental Safety, 168, 177–183.

Rolon, A. S., & Maltchick, L. 2006. Environmental factors as predictors of aquatic macrophyte richness and composition in wetlands of southern Brazil. Hydrobiologia, 556, 221–231.

Rolon, A. S., Rocha, O., & Maltchik, L. 2011. Does pine occurrence influence the macrophyte assemblage in Southern Brazil ponds? Hydrobiologia, 675(1), 157–165.

Rolon, A. S., Rocha, O., & Maltchik, L. 2012. Do effects of landscape factors on coastal pond macrophyte communities depend on species traits? Aquatic Botany, 103, 115–121.

Rolon, A. S., Lacerda, T., Maltchik, L., & Guadagnin, D. L. 2008. Influence of area, habitat and water chemistry on richness and composition of macrophyte assemblages in southern Brazilian wetlands. Journal of Vegetation Science, 19(2), 221–228.

Sánchez-Botero, J., Leitão, R., Caramashi, E., & Garcez, D. 2007. The aquatic macrophytes as refuge, nursery and feeding habitats for freshwater fish from Cabiúnas Lagoon, Restinga de Jurubatiba National Park, Rio de Janeiro, Brazil. Acta Limnologica Brasiliensia, 19, 143–153.

Saulino, H. H. L., Thompson, R. M., & Trivinho-Strixino, S. 2018. Herbivore functional traits and macroinvertebrate food webs have different responses to leaf chemical compounds of two macrophyte species in a tropical lake’s littoral zone. Aquatic Ecology, 52, 165–176.

Scheffer, M. 1998. Ecology of Shallow Lakes. Dordrecht: Kluwer Academic Publishers: p. 357.

Schneider, B., Cunha, E. R., Marchese, M., & Thomaz, S. M. 2018. Associations between macrophyte life forms and wnvironmental and morphometric factors in a large sub-tropical floodplain. Journal of Vegetation Science, 9, e195.

Schneider, B., Cunha, E. R., Espinola, L. A., Marchese, M., & Thomaz, S. M. 2019. The importance of local environmental, hydrogeomorphological and spatial variables for beta diversity of macrophyte assemblages in a Neotropical floodplain. Journal of Vegetation Science, 30(2), 269–280.

Silva, S. C. A., Cervi, A. C., Bona, C., & Padial, A. A. 2014. Aquatic macrophyte community varies in urban reservoirs with different degrees of eutrophication. Acta Limnologica Brasiliensia, 26(2), 129–142.

Silveira, M. J., Thomaz, S. M., Mormul, R. P., & Camacho, F. P. 2009. Effects of desiccation and sediment type on early regeneration of plant fragments of three species of aquatic macrophytes. International Review of Hydrobiology, 94, 169–178.

Silveira, M. J., & Thomaz, S. M. 2015. Growth of a native versus an invasive submerged aquatic macrophyte differs in relation to mud and organic matter concentrations in sediment. Aquatic Botany, 124, 85–91.

Silveira, M. J., Harthman, V. C., Michelan, T. S., & Souza, L. A. 2016. Anatomical development of roots of native and non-native submerged aquatic macrophytes in different sediment types. Aquatic Botany, 133, 24–27.

Silveira, M. J., Alves, D. C., & Thomaz, S. M. 2018. Effects of the density of the invasive macrophyte Hydrilla verticillata and root competition on growth of one native macrophyte in different sediment fertilities. Ecological Research, 33, 927–934.

Sodré, E. O., Figueiredo-Barros, M. P., Roland, F., Esteves, F. A., & Bozelli, R. L. 2017. Complimentary biodiversity measures applied to zooplankton in a recovering floodplain lake. Fundamental and Applied Limnology, 190, 279–298.

Sousa, W. T. Z., Thomaz, S. M., & Murphy, K. J. 2011. Drivers of aquatic macrophyte community structure in a Neotropical riverine lake. Acta Oecologica-International Journal of Ecology, 37(5), 462–475.

Tavechio W. L. G., & Thomaz, S. M. 2003. Effects of light on the growth and photosynthesis of Egeria najas Planchon. Brazilian Archivesof Biology and Technology, 46 (2), 203–209.

Teixeira-de Mello, F., Oliveira, V. A., Loverde-Oliveira, S. M., Huszar, V. L. M., Barquín J., Iglesias, C., Silva, T. S. F., Duque-Estrada, C. H., Silió-Calzada, A., & Mazzeo, N. 2016. The structuring role of free-floating plants on the fish community in a tropical shallow lake: an experimental approach with natural and artificial plants. Hydrobiologia, 778, 167–178.

Thomaz, S. M., & Bini, L. M. 2003. Ecologia e Manejo de Macrófitas Aquáticas. Maringá: EDUEM: p. 341.

Thomaz, S. M., & Cunha, E. R. 2010. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages' composition and biodiversity. Acta Limnologica Brasiliensia, 22, 218–236.

Thomaz, S. M., & Esteves, F. A. 2011. Comunidade de macrófitas aquáticas. In: F. A. Esteves (Org.), Fundamentos de Limnologia. 3ed. pp. 461–521. Rio de Janeiro: Interciência.

Thomaz, S. M., Pagioro, T. A., Bini, L. M., & Murphy, K. J. 2006. Effect of reservoir drawdown on biomass of three species of aquatic macrophytes in a large sub-tropical reservoir (Itaipu, Brazil). Hydrobiologia, 570, 53–59.

Thomaz, S. M., Chambers, P. A., Pierini, S. A., & Pereira, G. 2007. Effects of phosphorus and nitrogen amendments on the growth of Egeria najas. Aquatic Botany, 86(2), 191–196.

Thomaz, S. M., Dibble, E. D., Evangelista, L. R., Higuti, J., & Bini, L. M. 2008. Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biology, 53, 358–367.

Thomaz, S. M., Carvalho, P., Padial, A. A., & Kobayashi, J. T. 2009. Temporal and spatial patterns of aquatic macrophyte diversity in the Upper Parana River floodplain. Brazilian Journal of Biology, 69(2), 617–625.

Thomaz, S. M., Silveira, M. J., & Michelan, T. S. 2012. The colonization success of an exotic Poaceae is related to native macrophyte richness, wind disturbance and riparian vegetation. Aquatic Sciences, 74, 809–815.

Thomaz, S. M., Barbosa, L. G., de Souza, M. C., & Panosso, R. 2020. Opinion: The future of nature conservation in Brazil. Inland Waters, 10 (2), 295–303

Trindade, C. R., Landeiro, V. L., & Schneck, F. 2018. Macrophyte functional groups elucidate the relative role of environmental and spatial factors on species richness and assemblage structure. Hydrobiologia, 823(1), 217–230.

Umetsu, C. A., Evangelista, H. B. A., & Thomaz, S. M. 2012. The colonization, regeneration, and growth rates of macrophytes from fragments: a comparison between exotic and native submerged aquatic species. Aquatic Ecology, 46, 443–449.

Vyamazal, J. 2011. Plants used in constructed wetlands with horizontal subsurface flow. Hydrobiologia, 10, 738–749.

Published

2022-07-08