ECOLOGIA FILOGENÉTICA DE COMUNIDADES DE PEIXES DE RIACHO NEOTROPICAIS

Authors

DOI:

https://doi.org/10.4257/oeco.2021.2502.13

Keywords:

community ecology, ichthyofauna, lotic systems, phylogenetic diversity, phylogenetic signal.

Abstract

A ictiofauna de riachos neotropicais possui uma história evolutiva complexa, sendo composta tanto por linhagens antigas quanto recentes. Apesar dos padrões de diversidade de espécies de peixes de riachos serem relativamente bem conhecidos, o mesmo não ocorre em relação aos padrões de distribuição de clados e os fatores históricos responsáveis por tais padrões, que estão no escopo da ecologia filogenética. Entender o contexto evolutivo das comunidades pode levar a importantes inferências sobre os mecanismos em larga escala de tempo que as estruturam. Esta revisão tem como objetivos: (i) discutir os principais conceitos da ecologia filogenética e sua aplicação em peixes de riachos neotropicais; e (ii) apresentar os principais métodos que podem ser aplicados neste contexto. A primeira seção inicia com uma apresentação das principais hipóteses filogenéticas propostas para peixes e discute brevemente como as lacunas relacionadas às espécies de riachos neotropicais influenciam o avanço da ecologia filogenética. Em seguida, abordamos os principais conceitos da ecologia filogenética (sinal filogenético, estrutura filogenética de comunidades, diversidade filogenética), bem como as lacunas e o potencial de aplicação destes conceitos e ferramentas para ampliar o conhecimento sobre as comunidades de peixes de riachos neotropicais. Na segunda seção, apresentamos os principais métodos que podem ser aplicados para o estudo da ecologia filogenética dentro desse contexto, incluindo um procedimento padronizado para obtenção e manipulação da árvore filogenética mais atual para peixes ósseos, métodos comparativos, medidas e análises para estrutura de comunidades, e medidas que podem ser aplicadas para a conservação de peixes de riacho Neotropicais. Por fim, discutimos as perspectivas para os próximos anos para a melhor compreensão da ecologia de comunidades sob uma perspectiva de processos históricos e atuais.

PHYLOGENETIC ECOLOGY OF NEOTROPICAL STREAM FISH ASSEMBLAGES: Neotropical stream fishes exhibit a complex evolutionary history and encompass both old and recent lineages. Patterns of species diversity of stream fishes are relatively well-studied for Neotropical streams, but not for patterns of clade distribution and historical factors that structure these assemblages, which are the main interests of phylogenetic ecology. Understanding the evolutionary context of communities provides important insights into large-scale mechanisms that structure them. This review aims to: (i) discuss the main concepts of phylogenetic ecology and its application to Neotropical stream fishes; and (ii) highlight the main methods applied in this background. The first section presents the main phylogenetic hypothesis of fishes and discusses how their gaps in Neotropical stream fishes hinder phylogenetic ecology. Afterward, we discuss the main concepts of phylogenetic ecology (phylogenetic signal, community phylogenetic structure, and phylogenetic diversity), as well as gaps and potential applications of these concepts and tools to understand Neotropical stream fish assemblages. The second section introduces the main methods to address the phylogenetic ecology, including a standardized procedure to edit fish phylogenetic trees, comparative methods, and indices and analytical tools to understand community structure and conservation importance. Finally, we discuss the perspectives to the next years to better understand the Neotropical stream fish assemblages in the light of past and current historical processes.

Author Biography

Bruno Eleres Soares, Universidade Federal do Rio de Janeiro

Postdoctoral researcher, Programa de Pós-Graduação em Ecologia

References

Abreu, J. M. S., Craig, J. M., Albert, J. S., & Piorski, N. M. 2019. Historical biogeography of fishes from coastal basins of Maranhão State, northeastern Brazil. Neotropical Ichthyology, 17(2), 1–10. DOI: 10.1590/1982-0224-20180156

Albert, J. S., Destouni, G., Duke-Sylvester, S. M., Magurran, A. E., Oberdorff, T., Reis, R. E., Winemiller, K. O., & Ripple, W. J. 2020a. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio. DOI: 10.1007/s13280-020-01318-8

Albert, J. S., Tagliacollo, V. A., & Dagosta, F. 2020b. Diversification of Neotropical Freshwater Fishes. Annual Review of Ecology, Evolution, and Systematics, 51(1), annurev-ecolsys-011620-031032. DOI: 10.1146/annurev-ecolsys-011620-031032

Aquino, P. P. U., & Colli, G. R. 2017. Headwater captures and the phylogenetic structure of freshwater fish assemblages: a case study in Central Brazil. Journal of Biogeography, 44(1), 207–216. DOI: 10.1111/jbi.12870

Blanchet, S., Helmus, M. R., Brosse, S., & Grenouillet, G. 2014. Regional vs local drivers of phylogenetic and species diversity in stream fish communities. Freshwater Biology, 59(3), 450–462. DOI: 10.1111/fwb.12277

Blomberg, S. P., Garland, T., & Ives, A. R. 2003. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57(4), 717–745. DOI: 10.1111/j.0014-3820.2003.tb00285.x

Bloom, D. D., & Lovejoy, N. R. 2017. On the origins of marine-derived freshwater fishes in South America. Journal of Biogeography, 44(9), 1927–1938. DOI: 10.1111/jbi.12954

Bower, L. M., & Winemiller, K. O. 2019. Intercontinental trends in functional and phylogenetic structure of stream fish assemblages. Ecology and Evolution, (October), 1–15. DOI: 10.1002/ece3.5823

Brum, F. T., Debastiani, V. J., Loyola, R. D., & Duarte, L. da S. 2014. Clade-specific impacts of human land use on primates. Natureza & Conservação, 6(3), 144–149.

Cadotte, M. W., Cavender-Bares, J., Tilman, D., & Oakley, T. H. 2009. Using Phylogenetic, Functional and Trait Diversity to Understand Patterns of Plant Community Productivity. PLoS ONE, 4(5), e5695. DOI: 10.1371/journal.pone.0005695

Cadotte, M. W., Davies, T. J., & Peres-Neto, P. R. 2017. Why phylogenies do not always predict ecological differences. Ecological Monographs, 87(4), 535–551. DOI: 10.1002/ecm.1267

Cadotte, M. W., Dinnage, R., & Tilman, D. 2012. Phylogenetic diversity promotes ecosystem stability. Ecology, 93(8), S223–S233. DOI: 10.1890/11-0426.1

Cadotte, M. W., Jonathan Davies, T., Regetz, J., Kembel, S. W., Cleland, E., & Oakley, T. H. 2010. Phylogenetic diversity metrics for ecological communities: Integrating species richness, abundance and evolutionary history. Ecology Letters, 13(1), 96–105. DOI: 10.1111/j.1461-0248.2009.01405.x

Craig, J. M., Carvalho, T. P., Chakrabarty, P., Derouen, V., Ortega, H., Petry, P., Reis, R. E., Tagliacollo, V. A., & Albert, J. S. 2020. Using community phylogenetics to assess phylogenetic structure in the Fitzcarrald region of Western Amazonia. Neotropical Ichthyology, 18(2), 1–16. DOI: 10.1590/1982-0224-2020-0004

Dagosta, F. C. P., & de Pinna, M. 2019. The fishes of the Amazon: Distribution and biogeographical patterns, with a comprehensive list of species. Bulletin of the American Museum of Natural History, 431, 1–22.

Debastiani, V. J., & Duarte, L. da S. 2014. PCPS – an R-package for exploring phylogenetic eigenvectors across metacommunities. Frontiers of Biogeography, 6(3), 144–148.

Debastiani, V. J., & Duarte, L. da S. 2017. Evolutionary Models and Phylogenetic Signal Assessment via Mantel Test. Evolutionary Biology, 44(1), 135–143. DOI: 10.1007/s11692-016-9396-1

Diniz-Filho, J. A.F. 2001. Phylogenetic autocorrelation under distinct evolutionary processes. Evolution, 55(6), 1104–1109. DOI: 10.1111/j.0014-3820.2001.tb00630.x

Diniz-Filho, José Alexandre Felizola, De SanT’Ana, C. E. R., & Bini, L. M. 1998. An eigenvector method for estimating phylogenetic inertia. Evolution, 52(5), 1247–1262. DOI: 10.1111/j.1558-5646.1998.tb02006.x

Duarte, L. D. S., Debastiani, V. J., Carlucci, M. B., & Diniz-Filho, J. A. F. 2018. Analyzing community-weighted trait means across environmental gradients: should phylogeny stay or should it go? Ecology, 99(2), 385–398. DOI: 10.1002/ecy.2081

Duarte, L. D. S., Debastiani, V. J., Freitas, A. V. L., & Pillar, V. D. 2016. Dissecting phylogenetic fuzzy weighting: theory and application in metacommunity phylogenetics. Methods in Ecology and Evolution, 7(8), 937–946. DOI: 10.1111/2041-210X.12547

Faith, D. P. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation, 61(1), 1–10. DOI: 10.1016/0006-3207(92)91201-3

Faith, D. P. 2018. Biodiversity’s option value: A comment on Maier (2018). Ambio, 47(6), 735–736. DOI: 10.1007/s13280-018-1069-0

Felsenstein, J. 1985. Phylogenies and the comparative method. 1The American Naturalist, 125(1), 1–15.

Fritz, S. A., & Purvis, A. 2010. Selectivity in mammalian extinction risk and threat types: A new measure of phylogenetic signal strength in binary traits. Conservation Biology, 24(4), 1042–1051. DOI: 10.1111/j.1523-1739.2010.01455.x

Gerhold, P., Cahill, J. F., Winter, M., Bartish, I. V., & Prinzing, A. 2015. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Functional Ecology, 29(5), 600–614. DOI: 10.1111/1365-2435.12425

Gerhold, P., Carlucci, M. B., Procheş, Ş., & Prinzing, A. 2018. The Deep Past Controls the Phylogenetic Structure of Present, Local Communities. Annual Review of Ecology, Evolution, and Systematics, 49(1), 477–497. DOI: 10.1146/annurev-ecolsys-110617-062348

Gilbert, G. S., & Webb, C. O. 2007. Phylogenetic signal in plant pathogen-host range. Proceedings of the National Academy of Sciences of the United States of America, 104(12), 4979–4983. DOI: 10.1073/pnas.0607968104

Godoy, O., Kraft, N. J. B., & Levine, J. M. 2014. Phylogenetic relatedness and the determinants of competitive outcomes. Ecology Letters, 17(7), 836–844. DOI: 10.1111/ele.12289

Guénard, G., Legendre, P., & Peres-Neto, P. 2013. Phylogenetic eigenvector maps: A framework to model and predict species traits. Methods in Ecology and Evolution, 4(12), 1120–1131. DOI: 10.1111/2041-210X.12111

Holmlund, C. M., & Hammer, M. 1999. Ecosystem services generated by fish populations. Ecological Economics, 29, 253–268.

Hylton, A., Chiari, Y., Capellini, I., Barron, M. G., & Glaberman, S. 2018. Mixed phylogenetic signal in fish toxicity data across chemical classes. Ecological Applications, 28(3), 605–611. DOI: 10.1002/eap.1698

Isaac, N. J. B., Turvey, S. T., Collen, B., Waterman, C., & Baillie, J. E. M. 2007. Mammals on the EDGE: Conservation priorities based on threat and phylogeny. PLoS ONE, 2(3). DOI: 10.1371/journal.pone.0000296

Keppeler, F. W., & Winemiller, K. O. 2020. Incorporating indirect pathways in body size–trophic position relationships. Oecologia, 194(1–2), 177–191. DOI: 10.1007/s00442-020-04752-3

Kimball, R. T., Oliveros, C. H., Wang, N., White, N. D., Barker, F. K., Field, D. J., Ksepka, D. T., Chesser, R. T., Moyle, R. G., Braun, M. J., Brumfield, R. T., Faircloth, B. C., Smith, B. T., & Braun, E. L. 2019. A Phylogenomic Supertree of Birds. Diversity, 11(7), 109. DOI: 10.3390/d11070109

Losos, J. B. 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11(10), 995–1003. DOI: 10.1111/j.1461-0248.2008.01229.x

Lozupone, C., & Knight, R. 2005. UniFrac: A new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology, 71(12), 8228–8235. DOI: 10.1128/AEM.71.12.8228-8235.2005

Margules, C. R., & Pressey, R. L. 2000. Systematic conservation planning. Nature, 405(6783), 243–253. DOI: 10.1038/35012251

Mazel, F., Davies, T. J., Gallien, L., Renaud, J., Groussin, M., Münkemüller, T., & Thuiller, W. 2016. Influence of tree shape and evolutionary time-scale on phylogenetic diversity metrics. Ecography, 39(10), 913–920. DOI: 10.1111/ecog.01694

Mazel, F., Pennell, M. W., Cadotte, M. W., Diaz, S., Dalla Riva, G. V., Grenyer, R., Leprieur, F., Mooers, A. O., Mouillot, D., Tucker, C. M., & Pearse, W. D. 2018. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nature Communications, 9(1). DOI: 10.1038/s41467-018-05126-3

Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K., & Thuiller, W. 2012. How to measure and test phylogenetic signal. Methods in Ecology and Evolution, 3(4), 743–756. DOI: 10.1111/j.2041-210X.2012.00196.x

Nakamura, G., Vicentin, W., & Súarez, Y. R. 2017. Functional and phylogenetic dimensions are more important than the taxonomic dimension for capturing variation in stream fish communities. Austral Ecology, 1–11. DOI: 10.1111/aec.12529

Nakamura, G., Vicentin, W., & Súarez, Y. R. 2021. Taxonomic and phylogenetic beta diversity in headwater stream fish communities of the Paraná and Paraguay river basins. Neotropical Ichthyology, 19(1), e200126.

Nakamura, G., Richter, A., & Soares, B. E. 2021. FishPhyloMaker: An R package to generate phylogenies for ray-finned fishes. bioRxiv. DOI: 10.1101/2021.05.07.442752

Nakamura, G., Vicentin, W., Súarez, Y. R., & Duarte, L. 2020. A multifaceted approach to analyzing taxonomic, functional, and phylogenetic β‐diversity. Ecology. DOI: 10.1002/ecy.3122

Oliveira, C., Avelino, G. S., Abe, K. T., Mariguela, T. C., Benine, R. C., Ortí, G., Vari, R. P., & Corrêa E Castro, R. M. 2011. Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling. BMC Evolutionary Biology, 11(1), 1–25. DOI: 10.1186/1471-2148-11-275

Oliveira, E. F., Goulart, E., Breda, L., Minte-Vera, C. V., Paiva, L. R. de S., & Vismara, M. R. 2010. Ecomorphological patterns of the fish assemblage in a tropical floodplain: effects of trophic, spatial and phylogenetic structures. Neotropical Ichthyology, 8(3), 569–586. DOI: 10.1590/S1679-62252010000300002

Pagel, M. 1999. Inferring historical patterns of biological evolution. Nature, 401(October 1999), 877–884.

Parravicini, V., Casey, J. M., Schiettekatte, N. M. D., Brandl, S. J., Pozas-Schacre, C., Carlot, J., Edgar, G. J., Graham, N. A. J., Harmelin-Vivien, M., Kulbicki, M., Strona, G., Stuart-Smith, R. D. & Vii, J. 2020. Global gut content data synthesis and phylogeny delineate reef fish trophic guilds. bioRxiv. p. 1–34. DOI: 10.1101/2020.03.04.977116

Pavoine, S., Ollier, S., & Dufour, A. B. 2005. Is the originality of a species measurable? Ecology Letters, 8(6), 579–586. DOI: 10.1111/j.1461-0248.2005.00752.x

Pavoine, S., Vela, E., Gachet, S., De Bélair, G., & Bonsall, M. B. 2011. Linking patterns in phylogeny, traits, abiotic variables and space: A novel approach to linking environmental filtering and plant community assembly. Journal of Ecology, 99(1), 165–175. DOI: 10.1111/j.1365-2745.2010.01743.x

Pillar, V. D., & Duarte, L. da S. 2010. A framework for metacommunity analysis of phylogenetic structure. Ecology Letters, 13(5), 587–596. DOI: 10.1111/j.1461-0248.2010.01456.x

Pollock, L. J., Rosauer, D. F., Thornhill, A. H., Kujala, H., Crisp, M. D., Miller, J. T., & McCarthy, M. A. 2015. Phylogenetic diversity meets conservation policy: Small areas are key to preserving eucalypt lineages. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1662), 1–10. DOI: 10.1098/rstb.2014.0007

Rabosky, D. L., Chang, J., Title, P. O., Cowman, P. F., Sallan, L., Friedman, M., Kaschner, K., Garilao, C., Near, T. J., Coll, M., & Alfaro, M. E. 2018. An inverse latitudinal gradient in speciation rate for marine fishes. Nature, 559(7714), 392–395. DOI: 10.1038/s41586-018-0273-1

Redding, D. W., Hartmann, K., Mimoto, A., Bokal, D., DeVos, M., & Mooers, A. 2008. Evolutionarily distinctive species often capture more phylogenetic diversity than expected. Journal of Theoretical Biology, 251(4), 606–615. DOI: 10.1016/j.jtbi.2007.12.006

Redding, D. W., & Mooers, A. O. 2006. Incorporating evolutionary measures into conservation prioritization. Conservation Biology, 20(6), 1670–1678. DOI: 10.1111/j.1523-1739.2006.00555.x

Roa-Fuentes, Camilo A., Heino, J., Cianciaruso, M. V., Ferraz, S., Zeni, J. O., & Casatti, L. 2019. Taxonomic, functional, and phylogenetic β-diversity patterns of stream fish assemblages in tropical agroecosystems. Freshwater Biology, 64(3), 447–460. DOI: 10.1111/fwb.13233

Roa-Fuentes, Camilo A., Heino, J., Zeni, J. O., Ferraz, S., Cianciaruso, M. V., & Casatti, L. 2020. Importance of local and landscape variables on multiple facets of stream fish biodiversity in a Neotropical agroecosystem. Hydrobiologia, 7. DOI: 10.1007/s10750-020-04396-7

Roa-Fuentes, Camilo Andrés, Casatti, L., & Romero, R. de M. 2015. Phylogenetic signal and major ecological shifts in the ecomorphological structure of stream fish in two river basins in Brazil. Neotropical Ichthyology, 13(1), 165–178. DOI: 10.1590/1982-0224-20140045

Rodrigues, L. R., Fontoura, N. F., & Da Motta Marques, D. 2014. Food-web structure in a subtropical coastal lake: How phylogenetic constraints may affect species linkages. Marine and Freshwater Research, 65(5), 453–465. DOI: 10.1071/MF12259

Rutschmann, F. 2006. Molecular dating of phylogenetic trees: A brief review of current methods that estimate divergence times. Diversity and Distributions, 12(1), 35–48. DOI: 10.1111/j.1366-9516.2006.00210.x

Sechrest, W., Brooks, T. M., Da Fonseca, G. A. B., Konstant, W. R., Mittermeier, R. A., Purvis, A., Rylands, A. B., & Gittleman, J. L. 2002. Hotspots and the conservation of evolutionary history. Proceedings of the National Academy of Sciences of the United States of America, 99(4), 2067–2071. DOI: 10.1073/pnas.251680798

Soares, B. E., Ruffeil, T. O. B., & Montag, L. F. de A. 2013. Ecomorphological patterns of the fishes inhabiting the tide pools of the Amazonian coastal zone, Brazil. Neotropical Ichthyology, 11(4), 845–858. DOI: 10.1590/S1679-62252013000400013

Strecker, A. L., Olden, J. D., Whittier, J. B., & Paukert, C. P. 2011. Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity. Ecological Applications, 21(8), 3002–3013. DOI: 10.1890/11-0599.1

Súarez, Y. R., Valério, S. B., Tondado, K. K., Florentino, A. C., Felipe, T. R. A., Ximenes, L. Q. L., & Da Silva Lourenço, L. 2007. Fish species diversity in headwaters streams of Paraguay and Paraná basins. Brazilian Archives of Biology and Technology, 50(6), 1033–1042. DOI: 10.1590/S1516-89132007000700014

Sullivan, J. P., Muriel-Cunha, J., & Lundberg, J. G. 2013. Phylogenetic Relationships and Molecular Dating of the Major Groups of Catfishes of the Neotropical Superfamily Pimelodoidea (Teleostei: Siluriformes). Proceedings of the Academy of Natural Sciences of Philadelphia, 162(162), 89–110. DOI: 10.1635/053.162.0106

Toussaint, A., Charpin, N., & Brosse, S. 2016. Global functional diversity of freshwater fish is concentrated in the Neotropics. Nature, 6, 22125. DOI: 10.1038/srep22125

Tucker, C. M., Aze, T., Cadotte, M. W., Cantalapiedra, J. L., Chisholm, C., Díaz, S., Grenyer, R., Huang, D., Mazel, F., Pearse, W. D., Pennell, M. W., Winter, M., & Mooers, A. O. 2019. Assessing the utility of conserving evolutionary history. Biological Reviews, 94(5), 1740–1760. DOI: 10.1111/brv.12526

Tucker, C. M., Cadotte, M. W., Carvalho, S. B., Jonathan Davies, T., Ferrier, S., Fritz, S. A., Grenyer, R., Helmus, M. R., Jin, L. S., Mooers, A. O., Pavoine, S., Purschke, O., Redding, D. W., Rosauer, D. F., Winter, M., & Mazel, F. 2017. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews, 92(2), 698–715. DOI: 10.1111/brv.12252

Upham, N. S., Esselstyn, J. A., & Jetz, W. 2019. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biology. 17, 1–44. DOI: 10.1371/journal.pbio.3000494

Vaitla, B., Collar, D., Smith, M. R., Myers, S. S., Rice, B. L., & Golden, C. D. 2018. Predicting nutrient content of ray-finned fishes using phylogenetic information. Nature Communications, 9(1), 1–10. DOI: 10.1038/s41467-018-06199-w

Vellend, M. 2010. Conceptual synthesis in community ecology. Quarterly Review of Biology, 85(2), 183–206. DOI: 10.1086/652373

Véron, S., Saito, V., Padilla-García, N., Forest, F., & Bertheau, Y. 2019. The Use of Phylogenetic Diversity in Conservation Biology and Community Ecology: A Common Base but Different Approaches. The Quarterly Review of Biology, 94(2), 123–148. DOI: 10.1086/703580

Webb, C. O., Ackerly, D. D., & Kembel, S. W. 2008. Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24(18), 2098–2100. DOI: 10.1093/bioinformatics/btn358

Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. 2002. Phylogenies and Community Ecology. Annual Review of Ecology and Systematics, 33(1), 475–505. DOI: 10.1146/annurev.ecolsys.33.010802.150448

Wiens, J. J., & Graham, C. H. 2005. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics, 36, 519–539. DOI: 10.1146/annurev.ecolsys.36.102803.095431

Winter, M., Devictor, V., & Schweiger, O. 2013. Phylogenetic diversity and nature conservation: Where are we? Trends in Ecology and Evolution, 28(4), 199–204. DOI: 10.1016/j.tree.2012.10.015

Published

2021-06-16