• Thuane Mendes Anacleto Federal University of Rio de Janeiro
  • Helena Rodrigues Oliveira Federal University of Rio de Janeiro
  • Crstiane Fonseca Caetano da Silva Federal University of Rio de Janeiro
  • Rubens Perez Calegari University of São Paulo, Brazil
  • Mariana Erthal Rocha State University of Rio de Janeiro
  • Tiphane Andrade Figueira Federal University of Rio de Janeiro
  • Marcelo Côrtes Silva Federal Institute of Education
  • Laura Shizue Moriga Masuda Chico Mendes Institute of Biodiversity Conservation - ICMBio
  • Renato Paquet Polen - Solução e Valoração de Resíduos
  • Vinicius Peruzzi de Oliveira Federal University of Rio de Janeiro
  • Alex Enrich Prast Linköping University


Biogas, circular economy, sustainable development, waste management, water pollutants,


The large global generation and improper management of waste lead to the pollution of the environment and efforts toward reducing the impacts of anthropogenic activities on aquatic environments should be prioritized. The United Nations declared 2018-2028 as the international decade for action on “Water for Sustainable Development” and integrated management of water resources. Several international initiatives, such as the UN 2030 Agenda, the Sendai Framework for Disaster Risk Reduction and the Paris Agreement, have highlighted and strongly recommended the development of new technologies to reverse the current environmental scenario of global water bodies. The use of anaerobic digestion for treating organic wastes can minimize and avoid several adverse effects on aquatic environments while promoting nutrient cycling and the production of biogas, a renewable energy source that can replace fossil fuels and therefore decrease the emission of greenhouse gases. We performed a systematic review to evaluate the contribution of anaerobic digestion in preventing and reducing human impacts on aquatic ecosystems. China (15.1%), Spain (7.3%) and Italy (7.3%) are countries with a pronounced research focus on this topic, indicating their awareness on the importance of managing and preserving their water resources. The integration of co-digestion and pretreatment methods into anaerobic digestion improved the production of byproducts (especially energy and biofertilizer). Thus, this review highlights the success of AD technology as a waste treatment strategy, while reducing the damage inflicted to aquatic systems and its consequences to human health and aquatic biodiversity.

Author Biographies

Thuane Mendes Anacleto, Federal University of Rio de Janeiro

Postgraduate Program in Plant Biotechnology and Bioprocesses

Helena Rodrigues Oliveira, Federal University of Rio de Janeiro

Postgraduate Program in Plant Biotechnology and Bioprocesses

Crstiane Fonseca Caetano da Silva, Federal University of Rio de Janeiro

Postgraduate Program in Plant Biotechnology and Bioprocesses

Rubens Perez Calegari, University of São Paulo, Brazil

Center of Nuclear Energy in Agriculture

Mariana Erthal Rocha, State University of Rio de Janeiro

Postgraduate Program in Sanitary Engineering

Tiphane Andrade Figueira, Federal University of Rio de Janeiro

Institute of Biology, Multiuser Unit of Environmental Analysis - UMAA

Marcelo Côrtes Silva, Federal Institute of Education

Science and Technology of Amazonas

Laura Shizue Moriga Masuda, Chico Mendes Institute of Biodiversity Conservation - ICMBio

Department of Research, Assessment and Monitoring Biodiversity - DIBIO

Vinicius Peruzzi de Oliveira, Federal University of Rio de Janeiro

Institute of Biology, Multiuser Unit of Environmental Analysis - UMAA

Alex Enrich Prast, Linköping University

Department of Thematic Studies – Environmental Change


Achouri, O., Panico, A., Bencheikh-Lehocine, M., Derbal, K., & Pirozzi, F. 2017. Effect of Chemical Coagulation Pretreatment on Anaerobic Digestion of Tannery Wastewater. Journal of Environmental Engineering, 143(9), 04017039. DOI: 10.1061/(asce)ee.1943-7870.0001235

Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. 2011. Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 29(6), 675–685. DOI: 10.1016/j.biotechadv.2011.05.005

Ahmad, T., Belwal, T., Li, L., Ramola, S., Aadil, R. M., Abdullah, Xu, Y., & Zisheng, L. 2020, May 1. Utilization of wastewater from edible oil industry, turning waste into valuable products: A review. Trends in Food Science and TechnologyElsevier Ltd. DOI: 10.1016/j.tifs.2020.02.017

Alfa, M. I., Adie, D. B., Igboro, S. B., Oranusi, U. S., Dahunsi, S. O., & Akali, D. M. 2014. Assessment of biofertilizer quality and health implications of anaerobic digestion effluent of cow dung and chicken droppings. Renewable Energy, 63, 681–686. DOI: 10.1016/j.renene.2013.09.049

Alrefai, R., Alrefai, A. M., Benyounis, K. Y., & Stokes, J. 2020. Enhancing the Economic Viability of Anaerobic Digestion by Exploiting the Whole Biomass of Mango Waste and Its Residues after Digestion. Energies, 13(24), 6683. DOI: 10.3390/en13246683

Angelidaki, I., Xie, L., Luo, G., Zhang, Y., Oechsner, H., Lemmer, A., Munoz, R., & Kougias, P. G. 2019. Biogas Upgrading: Current and Emerging Technologies. In: S. R. Ashok Pandey, Christian Larroche, Claude-Gilles Dussap, Edgard Gnansounou, Samir Kumar Khanal (Ed.), Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels. pp. 817–843. Cambridge: Academic Press.

Arif, S., Liaquat, R., & Adil, M. 2018. Applications of materials as additives in anaerobic digestion technology. Renewable and Sustainable Energy Reviews, 97(September), 354–366. DOI: 10.1016/j.rser.2018.08.039

Audu, I. G., Barde, A., Yila, O. M., Onwualu, P. A., & Lawal, B. M. 2020. Exploring biogas and biofertilizer production from abattoir wastes in nigeria using a multi-criteria assessment approach. Recycling, 5(3), 1–24. DOI: 10.3390/recycling5030018

Baena-Moreno, F. M., Rodríguez-Galán, M., Vega, F., Reina, T. R., Vilches, L. F., & Navarrete, B. 2019. Synergizing carbon capture storage and utilization in a biogas upgrading lab-scale plant based on calcium chloride: Influence of precipitation parameters. Science of the Total Environment, 670, 59–66. DOI: 10.1016/j.scitotenv.2019.03.204

Barbanera, M., Pelosi, C., Taddei, A. R., & Cotana, F. 2018. Optimization of bio-oil production from solid digestate by microwave-assisted liquefaction. Energy Conversion and Management, 171(May), 1263–1272. DOI: 10.1016/j.enconman.2018.06.066

Bashir, I., Lone, F. A., Bhat, R. A., Mir, S. A., Dar, Z. A., & Dar, S. A. 2020. Concerns and Threats of Contamination on Aquatic Ecosystems. In: K. R. Hakeem, R. A. Bhat, & H. Qadri (Eds.), Bioremediation and Biotechnology: Sustainable Approaches to Pollution Degradation. pp. 55–73. Cham: Springer.

Batstone, D. J., & Virdis, B. 2014. The role of anaerobic digestion in the emerging energy economy. Current Opinion in BiotechnologyElsevier Ltd. DOI: 10.1016/j.copbio.2014.01.013

Battista, F., Frison, N., Pavan, P., Cavinato, C., Gottardo, M., Fatone, F., Eusebi, A. L., Majone, M., Zeppilli, M., Valentino, F., Fino, D., Tommasi, T., & Bolzonella, D. 2020. Food wastes and sewage sludge as feedstock for an urban biorefinery producing biofuels and added-value bioproducts. Journal of Chemical Technology and Biotechnology, 95(2), 328–338. DOI: 10.1002/jctb.6096

Batuecas, E., Tommasi, T., Battista, F., Negro, V., Sonetti, G., Viotti, P., Fino, D., & Mancini, G. 2019. Life Cycle Assessment of waste disposal from olive oil production: Anaerobic digestion and conventional disposal on soil. Journal of Environmental Management, 237(February), 94–102. DOI: 10.1016/j.jenvman.2019.02.021

Bauer, A., Moeller, L., Wedwitschka, H., Stinner, W., & Zehnsdorf, A. 2018. Anaerobic digestion of mixed silage of waterweed biomass and wheat straw in a production process. Energy, Sustainability and Society, 8(4). DOI: 10.1186/s13705-017-0145-9

Bayo, J., Gómez-López, M. D., Faz, A., & Caballero, A. 2012. Environmental assessment of pig slurry management after local characterization and normalization. Journal of Cleaner Production, 32, 227–235. DOI: 10.1016/j.jclepro.2012.04.003

BioenergyNews. 2015. Africa’s first grid-connected AD plant fires up. (Retrieved on March 22nd, 2021, from

Borowski, S., & Kubacki, P. 2015. Co-digestion of pig slaughterhouse waste with sewage sludge. Waste Management, 40, 119–126. DOI: 10.1016/j.wasman.2015.03.021

Brenes-Peralta, L., Jiménez-Morales, M. F., Campos-Rodríguez, R., De Menna, F., & Vittuari, M. 2020. Decision-making process in the circular economy: A case study on university food waste-to-energy actions in Latin america. Energies, 13(9). DOI: 10.3390/en13092291

Bucholc, K., Szymczak-Zyła, M., Lubecki, L., Zamojska, A., Hapter, P., Tjernström, E., & Kowalewska, G. 2014. Nutrient content in macrophyta collected from southern Baltic Sea beaches in relation to eutrophication and biogas production. Science of the Total Environment, 473–474, 298–307. DOI: 10.1016/j.scitotenv.2013.12.044

Capodaglio, A. G., Callegari, A., & Lopez, M. V. 2016. European framework for the diffusion of biogas uses: Emerging technologies, acceptance, incentive strategies, and institutional-regulatory support. Sustainability (Switzerland), 8(4), 1–18. DOI: 10.3390/su8040298

Chaudhry, F. N., & Malik, M. F. 2017. Factors Affecting Water Pollution: A Review. Journal of Ecosystem & Ecography, 07(01), 5–8. DOI: 10.4172/2157-7625.1000225

Chen, L., Cong, R. G., Shu, B., & Mi, Z. F. 2017. A sustainable biogas model in China: The case study of Beijing Deqingyuan biogas project. Renewable and Sustainable Energy Reviews, 78, 773–779. DOI: 10.1016/j.rser.2017.05.027

Chen, X., Yuan, H., Zou, D., Liu, Y., Zhu, B., Chufo, A., Jaffar, M., & Li, X. 2015. Improving biomethane yield by controlling fermentation type of acidogenic phase in two-phase anaerobic co-digestion of food waste and rice straw. Chemical Engineering Journal, 273, 254–260. DOI: 10.1016/j.cej.2015.03.067

Cheng, H., Li, Y., Hu, Y., Guo, G., Cong, M., Xiao, B., & Li, Y. Y. 2021. Bioenergy recovery from methanogenic co-digestion of food waste and sewage sludge by a high-solid anaerobic membrane bioreactor (AnMBR): mass balance and energy potential. Bioresource Technology, 326(January), 124754. DOI: 10.1016/j.biortech.2021.124754

Cheng, J., Bergmann, B. A., Classen, J. J., Stomp, A. M., & Howard, J. W. 2002. Nutrient recovery from swine lagoon water by Spirodela punctata. Bioresource Technology, 81(1), 81–85. DOI: 10.1016/S0960-8524(01)00098-0

Cohen, M. F., Hare, C., Kozlowski, J., Mccormick, R. S., Chen, L., Schneider, L., Parish, M., Knight, Z., Nelson, T. A., & Grewell, B. J. 2013. Wastewater polishing by a channelized macrophyte-dominated wetland and anaerobic digestion of the harvested phytomass. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 48(3), 319–330. DOI: 10.1080/10934529.2013.726896

Corcoran, E., Nellemann, C., Baker, E., Bos, R., Osborn, D., & Savelli, H. (Eds.). 2010. Sick Water? The central role of wastewater management in sustainable development. United Nations Environment Programme. GRID-Arendal. DOI: 10.1007/s10230-011-0140-x

da Costa, J. A., de Souza, J. P., Teixeira, A. P., Nabout, J. C., Carneiro, F. M., Estadual, U., & Ueg, D. G. 2018. Eutrophication in aquatic ecosystems. Acta Limnologica Brasiliensia, 30(2014), 245–253.

de Oliveira, F. R., dos Santos, R. F., França, S. L. B., & Rangel, L. A. D. 2020. Strategies and challenges for the circular economy: A case study in Portugal and a panorama for Brazil. Brazilian Archives of Biology and Technology, 63. DOI: 10.1590/1678-4324-2020180646

Dhanya, B. S., Mishra, A., Chandel, A. K., & Verma, M. L. 2020. Development of sustainable approaches for converting the organic waste to bioenergy. Science of the Total Environment, 723, 138109. DOI: 10.1016/j.scitotenv.2020.138109

Dinuccio, E., Berg, W., & Balsari, P. 2008. Gaseous emissions from the storage of untreated slurries and the fractions obtained after mechanical separation. Atmospheric Environment, 42(10), 2448–2459. DOI: 10.1016/j.atmosenv.2007.12.022

Drosg, B., Fuchs, W., Al Seadi, T., Madsen, M., & Linke, B. 2015. Nutrient Recovery by Biogas Digestate Processing. IEA Bioenergy.p. 40.

Edwards, J., Othman, M., & Burn, S. 2015. A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia. Renewable and Sustainable Energy ReviewsElsevier Ltd. DOI: 10.1016/j.rser.2015.07.112

EIA. 2020. Biomass explained: Landfill gas and biogas. (Retrieved on March 20th, 2021, from conversion of biomass to,biomass gasification for hydrogen production.&text=Nearly all of the biogas,and used for electricity generation.).

El-Mashad, H. M., & Zhang, R. 2010. Biogas production from co-digestion of dairy manure and food waste. Bioresource Technology, 101(11), 4021–4028. DOI: 10.1016/j.biortech.2010.01.027

FAO. 2017. Water pollution from agriculture: A global review. Executive Summary. p. 35. Rome. (Retrieved on from

Fayomi, G. U., Mini, S. E., Fayomi, O. S. I., Owodolu, T., Ayoola, A. A., & Wusu, O. 2019. A Mini Review on the Impact of Sewage Disposal on Environment and Ecosystem. In: IOP Conference Series: Earth and Environmental Science. DOI: 10.1088/1755-1315/331/1/012040

Fernandes, K. D., Cañote, S. J. B., Ribeiro, E. M., Thiago Filho, G. L., & Fonseca, A. L. 2019. Can we use Cd-contaminated macrophytes for biogas production? Environmental Science and Pollution Research, 26(27), 27620–27630. DOI: 10.1007/s11356-018-2318-2

Fernández-Rodríguez, M. J., de la Lama-Calvente, D., Jiménez-Rodríguez, A., Borja, R., & Rincón-Llorente, B. 2019. Anaerobic co-digestion of olive mill solid waste and microalga Scenedesmus quadricauda: effect of different carbon to nitrogen ratios on process performance and kinetics. Journal of Applied Phycology, 31(6), 3583–3591. DOI: 10.1007/s10811-019-01858-x

Ferrari, F., Pijuan, M., Rodriguez-Roda, I., & Blandin, G. 2019. Exploring submerged forward osmosis for water recovery and pre-concentration of wastewater before anaerobic digestion: A pilot scale study. Membranes, 9(8). DOI: 10.3390/membranes9080097

Ferronato, N., & Torretta, V. 2019. Waste mismanagement in developing countries: A review of global issues. International Journal of Environmental Research and Public Health, 16(6). DOI: 10.3390/ijerph16061060

Freitas, F. F., De Souza, S. S., Ferreira, L. R. A., Otto, R. B., Alessio, F. J., De Souza, S. N. M., Venturini, O. J., & Ando Junior, O. H. 2019. The Brazilian market of distributed biogas generation: Overview, technological development and case study. Renewable and Sustainable Energy ReviewsElsevier Ltd. DOI: 10.1016/j.rser.2018.11.007

Garg, P. 2020. Energy Scenario and Vision 2020 in India., 3(August 2002), 7–17.

Guven, H., Wang, Z., & Eriksson, O. 2019. Evaluation of future food waste management alternatives in Istanbul from the life cycle assessment perspective. Journal of Cleaner Production, 239, 117999. DOI: 10.1016/j.jclepro.2019.117999

Hamedani, S. R., Villarini, M., Colantoni, A., Carlini, M., Cecchini, M., Santoro, F., & Pantaleo, A. 2020. Environmental and economic analysis of an anaerobic co-digestion power plant integrated with a compost plant. Energies, 13(11). DOI: 10.3390/en13112724

Han, D., & Currell, M. J. 2017. Science of the Total Environment Persistent organic pollutants in China’ s surface water systems. Science of the Total Environment, 580, 602–625. DOI: 10.1016/j.scitotenv.2016.12.007

Hernández, S. C., Jiménez, L. D., & García, J. A. B. 2018. Potential of energy production from slaughterhouse wastewater. Interciencia, 43(8), 558–565.

Higgins, J. P. T., & Green, S. 2011. Cochrane Handbook for Systematic Reviews of Interventions.Wiley.

Hu, Y., Cheng, H., & Tao, S. 2017. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. Environment International, 107(July), 111–130. DOI: 10.1016/j.envint.2017.07.003

Hung, C. Y., Tsai, W. T., Chen, J. W., Lin, Y. Q., & Chang, Y. M. 2017. Characterization of biochar prepared from biogas digestate. Waste Management, 66, 53–60. DOI: 10.1016/j.wasman.2017.04.034

Hussain, Z., Mishra, J., & Vanacore, E. 2020. Waste to energy and circular economy: the case of anaerobic digestion. Journal of Enterprise Information Management, 33(4), 817–838. DOI: 10.1108/JEIM-02-2019-0049

IARI. 2012. Crop Residues Management with Conservation Agriculture : Potential , Constraints and Policy Needs. Indian Agricultural Research Institute.

IRENA. 2018. Biogas for road vehicles: Technology brief.

Jarvis, P. 2020. Environmental technology for the sustainable development goals (SDGs). Environmental Technology (United Kingdom), 41(17), 2155–2156. DOI: 10.1080/09593330.2020.1772547

Jiménez-Benítez, A., Ferrer, F. J., Greses, S., Ruiz-Martínez, A., Fatone, F., Eusebi, A. L., Mondéjar, N., Ferrer, J., & Seco, A. 2020. AnMBR, reclaimed water and fertigation: Two case studies in Italy and Spain to assess economic and technological feasibility and CO2 emissions within the EU Innovation Deal initiative. Journal of Cleaner Production, 270. DOI: 10.1016/j.jclepro.2020.122398

Kaspersen, B. S., Christensen, T. B., Fredenslund, A. M., Møller, H. B., Butts, M. B., Jensen, N. H., & Kjaer, T. 2016. Linking climate change mitigation and coastal eutrophication management through biogas technology: Evidence from a new Danish bioenergy concept. Science of the Total Environment, 541, 1124–1131. DOI: 10.1016/j.scitotenv.2015.10.015

Kavacik, B., & Topaloglu, B. 2010. Biogas production from co-digestion of a mixture of cheese whey and dairy manure. Biomass and Bioenergy, 34(9), 1321–1329. DOI: 10.1016/j.biombioe.2010.04.006

Kelleher, B. P., Leahy, J. J., Henihan, A. M., O’Dwyer, T. F., Sutton, D. C., & Leahy, M. J. 2016. Advances in poultry litter disposal technology – a review. Journal of Failure Analysis and Prevention, 16(2), 302–309. DOI: 10.1007/s11668-016-0088-z

Kemausuor, F., Adaramola, M. S., & Morken, J. 2018. A Review of Commercial Biogas Systems and Lessons for Africa. Energies, 11(11), 1–21. DOI: 10.3390/en11112984

Khalid, Z. Bin, Siddique, M. N. I., Nasrullah, M., Singh, L., Wahid, Z. B. A., & Ahmad, M. F. 2019. Application of solar assisted bioreactor for biogas production from palm oil mill effluent co-digested with cattle manure. Environmental Technology and Innovation, 16, 100446. DOI: 10.1016/j.eti.2019.100446

Khoshand, A., Kamalan, H., & Rezaei, H. 2018. Application of analytical hierarchy process (AHP) to assess options of energy recovery from municipal solid waste: a case study in Tehran, Iran. Journal of Material Cycles and Waste Management, 20(3), 1689–1700. DOI: 10.1007/s10163-018-0736-3

Kumar, P., Samuchiwal, S., & Malik, A. 2020. Anaerobic digestion of textile industries wastes for biogas production. Biomass Conversion and Biorefinery, 10(3), 715–724. DOI: 10.1007/s13399-020-00601-8

Lam, C. S., Ramanathan, S., Carbery, M., Gray, K., Vanka, K. S., Maurin, C., Bush, R., & Palanisami, T. 2018. A Comprehensive Analysis of Plastics and Microplastic Legislation Worldwide. Water, Air, and Soil Pollution, 229(11). DOI: 10.1007/s11270-018-4002-z

Levia, D. F., Creed, I. F., Hannah, D. M., Nanko, K., Boyer, E. W., Carlyle-Moses, D. E., van de Giesen, N., Grasso, D., Guswa, A. J., Hudson, J. E., Hudson, S. A., Iida, S., Jackson, R. B., Katul, G. G., Kumagai, T., Llorens, P., Ribeiro, F. L., Pataki, D. E., Peters, C. A., Carretero, D. S., Selker, J. S., Tetzlaff, D., Zalewski, M., & Bruen, M. 2020. Homogenization of the terrestrial water cycle. Nature Geoscience, 13(10), 656–658. DOI: 10.1038/s41561-020-0641-y

Lodeiro, P., Cordero, B., Barriada, J. L., Herrero, R., & Sastre De Vicente, M. E. 2005. Biosorption of cadmium by biomass of brown marine macroalgae. Bioresource Technology, 96(16), 1796–1803. DOI: 10.1016/j.biortech.2005.01.002

Lory, J. A., Massey, R., & Joern, B. 2006. Using Manure as a Fertilizer for Crop Production. In: Gulf Hypoxia and Local Water Quality Concerns Workshop. DOI: 10.13031/2013.24247

Luján-Facundo, M. J., Iborra-Clar, M. I., Mendoza-Roca, J. A., & Also-Jesús, M. 2019. Alternatives for the management of pig slurry: Phosphorous recovery and biogas generation. Journal of Water Process Engineering, 30(August 2017), 100473. DOI: 10.1016/j.jwpe.2017.08.011

Ma, Y., Yin, Y., & Liu, Y. 2017. Bioresource Technology New insights into co-digestion of activated sludge and food waste: Biogas versus biofertilizer. Bioresource Technology, 241, 448–453. DOI: 10.1016/j.biortech.2017.05.154

Manyi-Loh, C. E., Mamphweli, S. N., Meyer, E. L., & Okoh, A. I. 2019. Microbial anaerobic digestion: process dynamics and implications from the renewable energy, environmental and agronomy perspectives. International Journal of Environmental Science and Technology, 16(7), 3913–3934. DOI: 10.1007/s13762-019-02380-w

Marcos, A. C., Al-Kassir, A., Cuadros, F., & Yusaf, T. 2017. Treatment of slaughterhouse waste water mixed with serum from lacteal industry of extremadura in Spain to produce clean energy. Energies, 10(6). DOI: 10.3390/en10060765

Marotta, H., Duarte, C. M., Guimarães-Souza, B. A., & Enrich-Prast, A. 2012. Synergistic control of CO 2 emissions by fish and nutrients in a humic tropical lake. Oecologia, 168(3), 839–847. DOI: 10.1007/s00442-011-2131-9

Mata-Alvarez, J. (Ed.). 2003. Biomethanization of the organic fraction of municipal solid wastes. Vol. 34IWA Publising. DOI: 10.1002/chin.200313271

McCabe, B. K., Antille, D. L., Marchuk, S., Tait, S., Lee, S., Eberhard, J., & Baillie, C. P. 2019. Biosolids-derived organomineral fertilizers from anaerobic digestion digestate: Opportunities for Australia. 2019 ASABE Annual International Meeting, 3–18. DOI: 10.13031/aim.201900192

Monlau, F., Sambusiti, C., Antoniou, N., Barakat, A., & Zabaniotou, A. 2015. A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process. Applied Energy, 148, 32–38. DOI: 10.1016/j.apenergy.2015.03.024

Muthu, S. S. (Ed.). 2015. Environmental Implications of Recycling and Recycled Products. Springer. Hong Kong: Springer: p. 31–50. DOI: 10.1007/978-981-287-643-0_2

Narzari, R., Bordoloi, N., Chutia, R. S., & Borkotoki, B. 2015. Chapter 2- Biochar: An Overview on its Production, Properties and Potential Benefits. Biology, Biotechnology and Sustainable Development, (August). DOI: 10.13140/RG.2.1.3966.2560

Ornelas-Ferreira, B., Lobato, L. C. S., Colturato, L. F. D., Torres, E. O., Pombo, L. M., Pujatti, F. J. P., Araújo, J. C., & Chernicharo, C. A. L. 2020. Strategies for energy recovery and gains associated with the implementation of a solid state batch methanization system for treating organic waste from the city of Rio de Janeiro - Brazil. Renewable Energy, 146, 1976–1983. DOI: 10.1016/j.renene.2019.08.049

Padi, R. K., & Chimphango, A. 2020. Commercial viability of integrated waste treatment in cassava starch industries for targeted resource recoveries. Journal of Cleaner Production, 265, 121619. DOI: 10.1016/j.jclepro.2020.121619

Paolini, V., Petracchini, F., Segreto, M., Tomassetti, L., Naja, N., & Cecinato, A. 2018. Environmental impact of biogas: A short review of current knowledge. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 53(10), 899–906. DOI: 10.1080/10934529.2018.1459076

Peres, S., Monteiro, M. R., Ferreira, M. L., do Nascimento Junior, A. F., & de Los Angeles Perez Fernandez Palha, M. 2019. Anaerobic Digestion Process for the Production of Biogas from Cassava and Sewage Treatment Plant Sludge in Brazil. Bioenergy Research, 12(1), 150–157. DOI: 10.1007/s12155-018-9942-z

Piñas, J. A. V., Venturini, O. J., Lora, E. E. S., & Roalcaba, O. D. C. 2018. Technical assessment of mono-digestion and co-digestion systems for the production of biogas from anaerobic digestion in Brazil. Renewable Energy, 117, 447–458. DOI: 10.1016/j.renene.2017.10.085

Prabakar, D., Suvetha K, S., Manimudi, V. T., Mathimani, T., Kumar, G., Rene, E. R., & Pugazhendhi, A. 2018. Pretreatment technologies for industrial effluents: Critical review on bioenergy production and environmental concerns. Journal of Environmental Management, 218, 165–180. DOI: 10.1016/j.jenvman.2018.03.136

Pratt, S., Vandi, L.-J., Gapes, D., Werker, A., Oehmen, A., & Laycock, B. 2019. Polyhydroxyalkanoate (PHA) Bioplastics from Organic Waste. Biorefinery, 615–638. DOI: 10.1007/978-3-030-10961-5_26

Prazeres, A. R., Carvalho, F., & Rivas, J. 2012. Cheese whey management: A review. Journal of Environmental Management, 110, 48–68. DOI: 10.1016/j.jenvman.2012.05.018

Revitt, D. M., & Ellis, J. B. 2016. Urban surface water pollution problems arising from misconnections. Science of the Total Environment, 551–552, 163–174. DOI: 10.1016/j.scitotenv.2016.01.198

Richerzhagen, C., & Scholz, I. 2008. China’s Capacities for Mitigating Climate Change. World Development, 36(2), 308–324. DOI: 10.1016/j.worlddev.2007.06.010

Sabiiti, E. N. 2011. Utilising Agricultural Waste to Enhance Food Security and Conserve the Environment. African Journal of Food Agriculture, Nutrition and Development, 11(6).

Sahoo, R.K., Bhardwaj, D., Tuteja, N. 2013. Biofertilizers: A Sustainable Eco-Friendly Agricultural Approach to Crop Improvement. In: Tuteja, N., Singh Gill, S. (eds) Plant Acclimation to Environmental Stress. pp. 403 – 432. New York: Springer.

Sarker, S., Lamb, J. J., Hjelme, D. R., & Lien, K. M. 2019. A review of the role of critical parameters in the design and operation of biogas production plants. Applied Sciences (Switzerland), 9(9). DOI: 10.3390/app9091915

Shar, A. M., Mahesar, A. A., & Memon, K. R. 2018. Could shale gas meet energy deficit: its current status and future prospects. Journal of Petroleum Exploration and Production Technology, 8(4), 957–967. DOI: 10.1007/s13202-017-0399-y

Slorach, P. C., Jeswani, H. K., Cuéllar-Franca, R., & Azapagic, A. 2019. Environmental sustainability of anaerobic digestion of household food waste. Journal of Environmental Management, 236(January), 798–814. DOI: 10.1016/j.jenvman.2019.02.001

Talan, A., Tiwari, B., Yadav, B., Tyagi, R. D., Wong, J. W. C., & Drogui, P. 2021. Food waste valorization: Energy production using novel integrated systems. Bioresource Technology, 322(December 2020), 124538. DOI: 10.1016/j.biortech.2020.124538

Tamburini, E., Gaglio, M., Castaldelli, G., & Fano, E. A. 2020. Biogas from agri-food and agricultural waste can appreciate agro-ecosystem services: The case study of Emilia Romagna region. Sustainability (Switzerland), 12(20), 1–15. DOI: 10.3390/su12208392

Tyagi, V. K., Fdez-Güelfo, L. A., Zhou, Y., Álvarez-Gallego, C. J., Garcia, L. I. R., & Ng, W. J. 2018. Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. Renewable and Sustainable Energy Reviews, 93(May), 380–399. DOI: 10.1016/j.rser.2018.05.051

UN-WATER. 2020. The United Nations World Water Development Report 2020: Water and Climate Change. Paris: UNESCO: p. 219.

van Vliet, M. T. H., Jones, E. R., Flörke, M., Franssen, W. H. P., Hanasaki, N., Wada, Y., & Yearsley, J. R. 2021. Global water scarcity including surface water quality and expansions of clean water technologies. Environmental Research Letters, 16(2). DOI: 10.1088/1748-9326/abbfc3

Vaverková, M. D. 2019. Landfill impacts on the environment— review. Geosciences (Switzerland), 9(10), 1–16. DOI: 10.3390/geosciences9100431

Vilvert, A. J., Saldeira Junior, J. C., Bautitz, I. R., Zenatti, D. C., Andrade, M. G., & Hermes, E. 2020. Minimization of energy demand in slaughterhouses: Estimated production of biogas generated from the effluent. Renewable and Sustainable Energy Reviews, 120(March 2019), 109613. DOI: 10.1016/j.rser.2019.109613

von Sperling, M., & Gonçalves, R. F. 2007. Sludge characteristics and production. In: C. V. Andreoli, M. von Sperling, & F. Fernandes (Eds.), Sludge Treatment and Disposal. pp. 4 – 28. London: IWA Publishing.

Wang, K., Zhang, J., Liu, P., Cao, H., & Mao, Z. 2014. Reusing a mixture of anaerobic digestion ef fl uent and thin stillage for cassava ethanol production. Journal of Cleaner Production, 75, 57–63. DOI: 10.1016/j.jclepro.2014.04.007

Xiao, Q., Chen, W., Tian, D., Shen, F., Hu, J., Long, L., Zeng, Y., Yang, G., & Deng, S. 2020. Integrating the Bottom Ash Residue from Biomass Power Generation into Anaerobic Digestion to Improve Biogas Production from Lignocellulosic Biomass. Energy & Fuels, 34, 1101–1110. DOI: 10.1021/acs.energyfuels.9b01898

Xu, C., Shi, W., Hong, J., Zhang, F., & Chen, W. 2015. Life cycle assessment of food waste-based biogas generation. Renewable and Sustainable Energy Reviews, 49, 169–177. DOI: 10.1016/j.rser.2015.04.164

Xu, J., Adair, C. W., & Deshusses, M. A. 2016. Performance evaluation of a full-scale innovative swine waste-to-energy system. Bioresource Technology, 216, 494–502. DOI: 10.1016/j.biortech.2016.05.089

Zehnsdorf, A., Moeller, L., Stärk, H.-J., Auge, H., Röhl, M., & Stinner, W. 2017. The study of the variability of biomass from plants of the Elodea genus from a river in Germany over a period of two hydrological years for investigating their suitability for biogas production. Energy, Sustainability and Society, 541, 1124–1131. DOI: 10.1016/j.scitotenv.2015.10.015

Zhu, T., Curtis, J., & Clancy, M. 2019. Promoting agricultural biogas and biomethane production: Lessons from cross-country studies. Renewable and Sustainable Energy Reviews, 114(June), 109332. DOI: 10.1016/j.rser.2019.109332