GEOGRAPHIC DISTRIBUTION OF THE THREATENED PALM Euterpe edulis Mart. IN THE ATLANTIC FOREST: IMPLICATIONS FOR CONSERVATION
DOI:
https://doi.org/10.4257/oeco.2019.2303.19Palavras-chave:
climatic suitability, deforestation, habitat loss, palm heart, species distribution modellingResumo
The combination of species distribution models based on climatic variables, with spatially explicit analyses of habitat loss, may produce valuable assessments of current species distribution in highly disturbed ecosystems. Here, we estimated the potential geographic distribution of the threatened palm Euterpe edulis Mart. (Arecaceae), an ecologically and economically important species inhabiting the Atlantic Forest biodiversity hotspot. This palm is shade-tolerant, and its populations are restricted to the interior of forest patches. The geographic distribution of E. edulis has been reduced due to deforestation and overexploitation of its palm heart. To quantify the impacts of deforestation on the geographical distribution of this species, we compared the potential distribution, estimated by climatic variables, with the current distribution of forest patches. Potential distribution was quantified using five different algorithms (BIOCLIM, GLM, MaxEnt, Random Forest and SVM). Forest cover in the biome was estimated for the year 2017, using a recently-released map with 30 m resolution. A total of 111 records were kept to model climatic suitability of E. edulis, varying from 6 to 1500 m a.s.l and spanning almost the entire latitudinal gradient covered by the Atlantic Forest (from 7.72º S to 29.65º S). Based on climatic suitability alone, ca. 93 million hectares, or 66% of the area of the Atlantic Forest, would be suitable for the occurrence of E. edulis. However, 76% of this climatically suitable area was deforested. Therefore, currently, only ca. 15% of the biome retains forest patches that are climatically suitable for E. edulis. Our analyses show that E. edulis has suffered a dramatic loss of potential distribution area in the Atlantic Forest due to widespread deforestation. Our results provided updated information on the distribution of E. edulis, and may be used to identify which forested and deforested areas could receive priority in future conservation and restoration efforts.
Referências
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. 2019. spThin: Functions for spatial thinning of species occurrence records for use in ecological models. R package version 0.1.0.1. https://CRAN.R-project.org/package=spThin
Almeida-Gomes, M., Lorini, M. L., Rocha, C. F. D., & Vieira, M. V. 2013. Underestimation of extinction threat to stream dwelling amphibians due to lack of consideration of narrow area of occupancy. Conservation Biology, 28(2), 616–619. DOI: 10.1111/cobi.12196
Andrade, A. C. S. 2001. The effect of moisture content and temperature on the longevity of heart of palm seeds (Euterpe edulis). Seed Science and Technology, 29, 171–182
Araújo, M. & New, M. 2007. Ensemble forecasting of species distributions. Trends in Ecology and Evolution, 22, 42–47. DOI: 10.1016/j.tree.2006.09.010 PMID: 17011070
Elith, J., & Leathwick, J. R. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution and Systematics, 40, 677–697. DOI: 10.1146/annurev.ecolsys.110308.120159
Galetti, M., & Aleixo, A. 1998. Effects of palm heart harvesting on avian frugivores in the Atlantic rain forest of Brazil. Journal of Applied Ecology, 35(2), 286–293. DOI: 10.1046/j.1364-2664.1998.00294.x
Galetti, M., Zipparro, V. B., & Morellato, L. P. C. 1999. Fruiting phenology and frugivory on the palm Euterpe edulis in a lowland Atlantic Forest of Brazil. Ecotropica, 5, 115–122
Gatti, M. G., Campanello, P. I., Montti, L. F., & Goldstein, G. 2008. Frost resistance in the tropical palm Euterpe edulis and its pattern of distribution in the Atlantic Forest of Argentina. Forest Ecology and Management, 256, 633–640. DOI: 10.1016/j.foreco.2008.05.012
Gatti, M. G., Campanello, P. I., & Goldstein, G. 2011. Growth and leaf production in the tropical palm Euterpe edulis: light conditions versus developmental constraints. Flora, 206, 742–748. DOI: 10.1016/j.flora.2011.04.004
Gatti, M. G., Campanello, P. I., Villagra, M., Montti, L., & Goldstein, G. Hydraulic architecture and photoinhibition influence spatial distribution of the arborescent palm Euterpe edulis in subtropical forests. 2014. Tree Physiology, 34, 630 – 639. DOI: 10.1093/treephys/tpu039
Genini, J., Galetti, M., & Morellato, P. C. 2009. Fruiting phenology of palms and trees in an Atlantic rainforest land-bridge island. Flora, 204(2), 131–145. DOI: 10.1016/j.flora.2008.01.002
Guisan, A., Tingley, R., Baumgartner, J. B., & Naujokaitis-Lewis, I. 2013. Predicting species distributions for conservation decisions. Ecology Letters, 16, 1424–1435. DOI: 10.1111/ele.12189
Henderson, A., Galeano, G., & Bernal, R. 1995. Field guide to the palms of the Americas. Princeton, NJ: Princeton University Press: p. 352.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978. DOI: 10.1002/joc.1276
Hijmans, R. J., Phillips, S., Leathwick, J., & Elith, J. 2017. dismo: Species distribution modeling. R package version 1.1-4. https://CRAN.R-project.org/package=dismo
Hijmans, R. J. 2017. raster: Geographic data analysis and modeling. R package version 2.6-7. https://CRAN.R-project.org/package=raster
IBGE - Instituto Brasileiro de Geografia e Estatística. 1993. Mapa de Vegetação do Brasil. Ministério do Planejamento e Orçamento.
Laurance, W. F. 2009. Conserving the hottest of the hotspots. Biological Conservation, 142, 1137. DOI: 10.1016/j.biocon.2008.10.011
Liaw, A., & Wiener, M. 2002. Classification and regression by randomForest. R News, 2(3), 18–22.
Lobo, J. M., & Tognelli, M. F. 2011. Exploring the effects of quantity and location of pseudo-absences and sampling biases on the performance of distribution models with limited point occurrence data. Journal for Nature Conservation, 19, 1–7. DOI: 10.1016/j.jnc.2010.03.002
Martinelli, G., & Moraes, M.A. 2013. Livro vermelho da flora do Brasil. Rio de Janeiro: Andrea Jakobsson Estúdio, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro: p. 1100.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B., & Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403, 853–858. DOI: 10.1038/35002501
Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., Börger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., Echeverria-Londoño, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., Ingram, D. J., Itescu, Y., Kattge, J., Kemp, V., Kirkpatrick, L., Kleyer, M., Correia, D. L. P., Martin, C. D., Meiri, S., Novosolov, M., Pan, Y., Phillips, H. R. P., Purves, D. W., Robinson, A., Simpson, J., Tuck, S. L., Weiher, E., White, H. J., Ewers, R. M., Mace, G. M., Scharlemann, J. P. W., & Purvis, A. 2015. Global effects of land use on local terrestrial biodiversity. Nature, 520, 45–59. DOI: 10.1038/nature14324
R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Rezende, C. L., Scarano, F. R., Assad, E. D., Joly, C. A., Metzger, J. P., Strassburg, B. B. N., Tabarelli, M., Fonseca, G. A., & Mittermeier, R. A. 2018. From hotspot to hopespot: An opportunity for the Brazilian Atlantic Forest. Perspectives in Ecology and Conservation, 16, 208–214. DOI: 10.1016/j.pecon.2018.10.002
Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J., & Hirota, M. M. 2009. The Brazilian Atlantic forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142, 1141–1153. DOI: 10.1016/j.biocon.2009.02.021
Roberto, G. G., & Habermann, G. 2010. Morphological and physiological responses of the recalcitrant Euterpe edulis seeds to light, temperature and gibberellins. Seed Science and Technology, 38, 367–378. DOI: 10.15258/sst.2010.38.2.10
Silva-Matos, D. M., Freckleton, R. P., & Watkinson, A. R. 1999. The role of density dependence in the population dynamics of a tropical palm. Ecology, 80, 2635–2650. DOI: 10.1890/0012-9658
Souza, T. V., Lorini, M. L., Alves, M. A. S., Cordeiro, P., & Vale, M. M. 2011. Redistribution of threatened and endemic Atlantic forest birds under climate change. Natureza & Conservacão, 9(2), 214–218. DOI: 10.4322/natcon.2011.028
Souza, A. C., Portela, R. C. Q., & Mattos, E. A. 2018. Demographic processes limit upward altitudinal range expansion in a threatened tropical palm. Ecology and Evolution, 1–12. DOI: 10.1002/ece3.4686
Teixeira, T. S. M., Weber, M. M., Dias, D., Lorini, M. L., Esbérard, C. E. L., Novaes, R. L. M., Cerqueira, R., & Vale, M. M. 2014. Combining environmental suitability and habitat connectivity to map rare or Data Deficient species in the Tropics. Journal for Nature Conservation, 22(4), 384–390. DOI: 10.1016/j.jnc.2014.04.0