MESOZOOPLÂNCTON E MASSAS D´ÁGUA NA BAÍA DE GUANABARA: DEZ ANOS DE MONITORAMENTO
DOI:
https://doi.org/10.4257/oeco.2020.2402.09Palavras-chave:
Zooplankton, time distribution, hydrological structure, tropical eutrophic bay, LTERResumo
O presente trabalho é fruto de pesquisas desenvolvidas no âmbito do Programa de Pesquisas Ecológicas de Longa Duração – PELD/ CNPq, sobre o mesozooplâncton da Baía de Guanabara. A Baía de Guanabara é um dos ecossistemas mais eutrofizados e poluídos do mundo. Sua estrutura hidrológica é peculiar devido à uma dupla estratificação da sua coluna d´água: térmica, decorrente da entrada da Água Central do Atlântico Sul no fundo, e halina, com baixa salinidade na superfície devido ao efluente continental. Apesar de uma grande disponibilidade em biomassa primária, observa-se uma degradação das comunidades mesozooplanctônicas nas áreas mais internas. Constitui o objetivo principal desse estudo, analisar a composição e abundância dos principais elementos de mesozooplâncton da baia ao longo de uma década. Nos formulamos a hipótese de um efeito das mudanças hidrológicas, reveladoras das condições climáticas globais, sobre as comunidades mesozooplanctônicas. As coletas foram efetuadas durante 10 anos, 2 a 3 vezes ao mês, com rede de 200 µm de abertura de malha em arrastos verticais numa estação fixa. O mesozooplâncton foi dominado pelos copepodos Acartia tonsa, Paracalanus spp, Temora turbinata, Oncea venusta e Oithona hebes, seguido de Appendicularia, Chaetognatha e Cladocera. As flutuações de densidade e de composição são essencialmente decorrentes da influência sazonal e da estratificação da coluna d´água causada por mudanças de massas d´água. A ausência de variação interanual da densidade do mesozooplâncton pode ser explicada pela insuficiência da série temporal e/ou pela eficiência, mesmo que parcial, do Programa de Despoluição da Baía de Guanabara do Governo do Estado de Rio de Janeiro. Prosseguir com o monitoramento de longo prazo é essencial para poder detectar eventual alteração na densidade e composição das comunidades mesozooplanctônicas da baía.
MESOZOOPLANKTON AND WATER MASSES IN THE GUANABARA BAY: TEN YEARS MONITORING. This work was made from the Long Term Ecological Research program -LTER /CNPq, on the mesozooplankton of the Guanabara Bay. Guanabara Bay is one of the most eutrophicated and polluted ecosystem in the world. Its hydrological structure is singular due to a double stratification of its water column: thermal, due to an input of cold water on the bottom from the South Atlantic Central Water, and haline, with low salinity at the surface due to continental flow. In spite of high primary biomass availability, we observed a decay of mesozooplankton community at inner areas of the bay. The main objective of this study is to analyze composition and abundance of the main mesozooplanktonic organisms throughout a ten years monitoring. We hypothesized that there is an effect of hydrological changes on mesozooplankton community due to climate change. Sampling was made 2-3 times per month during 10 years, with a plankton net (mesh size 200 µm) hauled vertically at a fixed station. The mesozooplankton was dominated by the copepods Acartia tonsa, Paracalanus spp, Temora turbinata, Oncea venusta, Oithona hebes, followed by the Appendicularian, Chaetognatha and Cladocera. Variations were due to seasonal influence and stratification of the water column caused by changes in water masses. The reason of undetected long-term variation of the mesozooplankton at Guanabara Bay could be due to insufficient sampling time or/and the partially effective efficiency of the Program for Remediation of Guanabara Bay implemented by the government of Rio de Janeiro State. The continuity of the long-term monitoring is needed to show changes of the density and composition of mesozooplankton at the Guanabara Bay.
Referências
Alvarez-Cadena, J. N., Segura-Puertas, 1997. Zooplankton variability and copepod species assemblages from a tropical coastal lagoon. Gulf Research Reports, 9(4), 345–355
Avila, T. R., Pedrozo, C. S. & Bersano, J. G. F., 2009. Variação temporal do zooplâncton da Praia de Tramandaí, Rio Grande do Sul, com ênfase em Copepoda. Iheringia, Série Zoologia, Porto Alegre, 99(1), 18–26
Azam, F., Fenchel, T., Field, J. G., Ray, J. S., Meyer-Reh, L. A., Thingstad, F. 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Serie, 10, 257–263
Berline, L., Siokou-Frangou, I., Marasovic, I., Vidjak, O., Puelles, M. L. F. de, Mazzocchi, M. G., Assimakopoulou, G., Zervoudaki, S., Fonda-Umani, S., Conversi, A., Garcia-Comas, C., Ibanez, F., Gasparini, S., Stemmann, L. & Gorsky, G. 2012. Intercomparison of six Mediterranean zooplankton time series. Progress in Oceanography, 97-100, 76–91, DOI: 10.1016/j.pocean.2011.11.011
Bode, A., Alvarez-Ossorio, M. T., Miranda, A., López-Urrutia, A. & Valdés, L. 2012. Comparing copepod time-series in the North of Spain: Spatial autocorrelation of community composition. Progress in Oceanography, 97-100, 108–119, DOI: 10.1016/j.pocean.2011.11.013
Castro, M. S. de, Bonecker, A. C. T., Valentin, J. L. 2005. Seasonal variation in fish larvae at the entrance of Guanabara Bay, Brazil. Brazilian Archives of Biology and Technology, 48(1), 121–128,
Dias, C. de O. & Bonecker, S. L. C. 2008. Inter-annual variability of planktonic copepods in a tropical bay in Southern Brazil. Brazilian Archives of Biology and Technology, 51(4), 731–742 (DOI: 10.1590/S1516-89132008000400011)
Escribano, R, Hidalgo, P., Fuentes, M. & Donoso, K. 2012. Zooplankton time series in the coastal zone off Chile: Variation in upwelling and responses of the copepod community. Progress in Oceanography, 97-100, 174–186, DOI: 10.1016/j.pocean.2011.11.006
Eskinazi-Sant´Anna, E. M. & Björnberg, T. K. S. 2006. Seasonal dynamics of mesozooplankton in Brazilian coastal waters. Hydrobiologia, 563, 253–268, DOI: 10.1007/s10750-006-0014-6
Fernandes, L. D. de A., Bonecker, S. L. C. & Valentin, J. L. 2002. Dynamic of Decapod Crustacean Larvae on the Entrance of Guanabara Bay. Brazilian Archives of Biology and Technology, 45(4), 491–498
Finenko, Z. Z., Piontkovski, S. A., Williama, R. & Mishonov, A. V. 2003. Variability of phytoplankton mesozooplankton biomass in the subtropical and tropical Atlantic Ocean. Marine Ecology Progress Series, 250, 125–144
Godhantraman, N. 2013. Impacts of climate change on marine plankton communities in tropical marine coastal ecosystems, southeast coast of India. Journal of Marine Science: Research & Development, 3(3), 154, DOI: 10.4172/2155-9910
Gonzalez-Gil, R., Taboada, F. G., Höfer, J. & Anadón, R. 2015. Winter mixing and coastal upwelling drive long-term changes in zooplankton in the Bay of Biscay (1993-2010). Journal of Plankton Research, 0(0), 1—15, DOI : 10.1093/plankt/fbv001
Gregoracci, G. B., Nascimento, J. R., Cabral, A. S., Paranhos, R., Valentin, J. L., Thompson, C. C. & Thompson, F. L. 2012. Structuring of bacterioplankton diversity in a large tropical bay. Plos One, v. 7, p. e31408
Guenther, M., Lima, I. V., Mugrabe, G., Tenenbaum, D. R., Gonzalez-Rodriguez, E. & Valentin, J. L. 2012. Small time scale plankton structure variations at the entrance of a tropical eutrophic bay (Guanabara Bay, Brazil). Brazilian Journal of Oceanography, 60, 405–414
Júnior, A. N. de S., Magalhães, A. Pereira, L. C. C. & Costa, R. M. da 2013. Zooplankton dynamics in a tropical Amazon estuary. Journal of Coastal Research, 65, 1230–1235, DOI: 10.2112/S165-208.1
Kimmel, D. G. & Roman, M. R. 2004. Long-term trends in mesozooplankton abundance in Chesapeake Bay, USA: influence of freshwater input. Marine Ecology Progress Series, 267, 71–83
Kjerfve, B., Lacerda, L. D. de & Dias, G. T. M. 2001. Baía de Guanabara, Rio de Janeiro, Brazil. In: U. Seeliger & B. Kjerfve (Eds.), Coastal Marine Ecosystems of Latin America, Ecological Studies 144. pp. 107–117. Springer.
Kjerfve, B., Ribeiro, C. H. A, Dias, G. T. M., Filippo, A. M. & Quaresma, V. S. 1997. Oceanographic characteristics of an impacted coastal bay: Baía de Guanabara, Rio de Janeiro, Brazil. Continental Shelf Research, 17(13), 1609–1643
Leles, S. G., Moser, G. A. O., Valentin, J. L. & Figueiredo, G. M. 2017. A Lagrangian study of plankton trophodynamics over a diel cycle in a eutrophic estuary under upwelling influence. Journal of the Marine Biological Association of the United Kingdom, 1–12. DOI: 10.1017/S0025315417001333
Livingston, R. J. 2001. Eutrophication processes in coastal systems: origin and succession of plankton blooms and effects on secondary production in Gulf Coast estuaries. CRC Press: p. 327
Marazzo, A. & Nogueira, C. S. R. 1996. Composition, spatial and temporal variations of chaetognatha in Guanabara bay, Brazil. Journal of Plankton Research, 18(12), 2367–2376
Marazzo, A. & Valentin, J. L. 2000a. Daily variation of marine cladoceran densities in a tropical bay, Brazil. Hydrobiologia, 428, 205–208
Marazzo, A. & Valentin, J. L. 2000b. A report of marine cladoceran Evadne spinifera Muller (Crustácea, Branchiopoda) in Guanabara Bay, Brazil. Revista brasileira de Zoologia, 17(4), 1101–1102
Marazzo, A. & Valentin, J. L. 2003a. Penilia avirostris (Crustacea, Ctenopoda) in a tropical bay: variations in density and aspects of reproduction. Acta Oecologica, 24, S251–S257.
Marazzo, A. & Valentin, J. L. 2003b. Population dynamics of Penilia avirostris (Dana, 1852) (Cladocera) in a tropical bay. Crustaceana, 76(7), 803–817
Mayr, L. M., Tenenbaum, D. R., Villac, M. C., Paranhos, R., Nogueira, C. R., Bonecker, S. L. C. & Bonecker, A. C. T. 1989. Hydrobiological characterization of Guanabara Bay. In: O. T. Maggon & C. Nves (Eds.), Coastline of Brazil, pp. 124–139. New York: American Society of Civil Engineers.
Mazzocchi, M. G., Dubroca, L., García-Comas, C., Di Capoa, I. & d´Alcalá, M. R. 2012. Stability and resilience in coastal copepod assemblages: The case of the Mediterranean long-term ecological research at Station MC (LTER-MC). Progress in Oceanography, 97-100, 135–151, DOI: 10.1016/j.pocean.2011.11.003
Mckinnon, A. D. & Duggan, S. 2014. Community Ecology of Pelagic Copepods in Tropical Coastal Waters. In: L. Seuront (Edit.), Copepods: Diversity, Habitat and Behavior. pp. 25–49, Nova Science Publishers, Inc.
Miyashita, L. K., Brandini, F. P., Martinelli-Filho, J. E., Fernandes, L. F. & Lopes, R. M. 2012. Comparison of zooplankton community structure between impacted and non-impacted áreas of Paranaguá Bay estuarine complex, south Brazil. Journal of Natural History, 46(25-25), 1557–1571. DOI: 10.1080/00222933.2012.691997
Möllmann, C., Kornilovs, G. & Sidrevics, L. 2000. Long-term dynamics of main mesozooplankton species in the central Baltic Sea. Journal of Plankton Research, 22(11), 2015–2038
Muxagata, E. & Teixeira-Amaral, P. 2019. Continuous monitoring of the micro and mesozooplankton of the Patos Lagoon estuary and adjacent coastal area. Sistema de Informação sobre a Biodiversidade Brasileira – SiBBr. Sampling event dataset. DOI: 10.15468/1xkowr accessed via GBIF.org on 2020-01-14
Nogueira, C. R., Bonecker, A. C. T. & Bonecker, S. L. C. 1988. Zooplâncton da Baía de Guanabara (RJ-Brasil). Composição e variações espaço-temporais. In: F. Brandini (Edit.), Memórias do III Encontro Brasileiro de Plâncton, 5-9 de dez. de 1988, Caiobá, PR, Brasil, pp. 151–156
Odebrecht, C, Villac, M. C., Abreu, P. C., Haraguchi, L., Gomes, P. D. F. & Tenenbaum, D. R. 2018. Flagellates versus diatoms: phytoplankton trends in tropical and subtropical estuarine-coastal ecosystems. In: M. S. Hoffmeyer et al. (Eds.). Plankton Ecology of the Southwestern Atlantic. pp. 249–267, Springer International Publishing. DOI: 10.1007/978-3-319-77869-3_12
Pomeroy, L. R. 1974. The ocean’s food web: a chanching paradigm. BioScience, 24, 499–504.
Schwamborn, R., Bonecker, S. L. C., Galvão, I. B., Silva, T. A. & Neumann-Leitão, S. 2004. Mesozooplankton grazing under conditions of extrem eutrophication in Guanabara Bay, Brazil. Journal of Plankton research, 26(9), 983–992
Sell, D. W. & Evans, M. S. 1982. A statistical analysis of subsampling and an evaluation of the Folsom plankton splitter. Hydrobiologia, 94, 223–230
Signori, C. N., Valentin, J. L., Pollery, R. C. G. & Enrich-Prast, A. 2017. Temporal variability of dark carbon fixation and bacterial production and their relation with environmental factors in a tropical estuarine system. Estuaries and Coasts, 41(4), 1089–1101 DOI: 10.1007/s12237-017-0338-7
STATSOFT, Inc. 2005. STATISTICA (Data Analysis Software System, version 7.1, www.statsoft.com
Sterza, J. M. & Fernandes, L. F. L. 2006. Zooplankton community of the Vitoria Bay estuarine system (Southern Brazil). Characterization during a three-year study. Brazilian Journal of Oceanography, 54(2-3), 95–105 on-line version ISSN 1982-436X
Sterza, J. M., Ovalle, A. R. C., Fernandes, L. F. L. 2008. Zooplankton distribution and abundance related to the hydrochemistry in a tropical bay (south-east Brazil). Cahier de Biologie Marine, 49, 229–245
Teixeira-Amaral, P., Amaral, W. J. O., Ortiz, D. Ortiz de, Agostini, V. O. & Muxagata, E. 2017. Biota of the Patos Lagoon estuary and adjacent marine coast: Long-term changes induced by natural and human–related Factors. In: C. Odebrecht, E. R. Secchi, P. C. Abreu & J. H. Muelbert (Eds.), Marine Biology Research, Issue 1: Thematic Issue No 9, 13, pp. 48–61, DOI: 10.1080/17451000.2016.1248850
Valentin, J. L. 1984. Spatial structure of the zooplankton community in the Cabo Frio region (Brazil) influenced by coastal upwelling. Hydrobiologia, 113, 183–199
Valentin, J. L., Monteiro-Ribas, W. & Mureb, M.A. 1987a. O zooplâncton das águas superficiais costeiras do litoral Fluminense: analise multivariada. Ciência e Cultura, 39(3), 265–271
Valentin, J. L., Monteiro-Ribas, W., Mureb, M. A & Pessotti, E. 1987b. Sur quelques zooplanctontes abondants dans l´upwelling de Cabo Frio (Brésil). Journal of Plankton Research, 9(6), 1195–1216
Valentin, J. L. & Marazzo, A. 2003. Modelling the population dynamics of Penilia avirostris (Branchiopoda, Ctenopoda) in a tropical bay. Acta Oecologica, 24, S369–S376
Valentin, J. L., Tenenbaum, D. R., Bonecker, A., Bonecker, S. L. C., Nogueira, C. R., Paranhos, R. & Villac, M. C. 1999a. Caractéristiques hydrologiques de la baie de Guanabara (Rio de Janeiro, Brésil). Journal de Recherche Océanographique, 24(1), 33–41
Valentin, J. L., Tenenbaum, D. R., Bonecker, A., Bonecker, S. L. C., Nogueira, C. R. & Villac, M. C. 1999b. O Sistema Planctônico da Baía de Guanabara: Síntese do Conhecimento. Oecologia Brasiliensis, Rio de Janeiro, 35–59
Villac, M. C. & Tenenbaum, D. R. 2010. The phytoplankton of Guanabara Bay, Brazil. I. Historical account of its biodiversity. Biota Neopropica (Edição em Português). Online, v. 10(2), 271--293
Wiafe, G., Yaqub, H. B., Mensah, M. A. & Frid, C. L. J. 2008. Impact of climate change on long-term zooplankton biomass in the upwelling region of the Gulf of Guinea. International Council for the Exploration of the Sea, Oxford Journals, 318–324, DOI: 10.1093/icesjms/fsn042