BIG TREES, BIG FALL: LARGE-DIAMETER TREES AND THE FATE OF CARBON STOCKS IN ATLANTIC FOREST REMNANTS

Autores

  • Fátima Aparecida Arcanjo Universidade Estadual de Londrina
  • Ellen Taglianetti Universidade Estadual de Londrina
  • José Marcelo Domingues Torezan Universidade Estadual de Londrina http://orcid.org/0000-0001-7962-1499

DOI:

https://doi.org/10.4257/oeco.2020.2402.14

Palavras-chave:

aboveground biomass, tree health, edge effects, fragmentation.

Resumo

Large trees (i.e. ≥ 50 cm diameter) are known for being more susceptible to stress, and its decline in fragmented forests have been reported as an important cause of carbon loss associated with forest degradation. In this paper, we investigate along edge-interior gradients (0-250 m) the distribution, biomass and health indicators (trunk and branch breaks, partial crown death, fungi infection, termites and liana infestation) of live and standing dead Large Trees (LTs; diameter ≥ 50 cm), in five seasonal Atlantic Forests (34 to 690 ha) of northern Paraná state, Brazil. We sampled 118 live LTs in the five forest fragments, where aboveground biomass (AGB) ranged from 22 to 78 Mg/ha, living tree abundance ranged from 8 to 25.6 trees/ha, and standing dead trees ranged from 1 to 4 trees/ha. Larger forest fragments presented more living LTs, which were healthier and contain more biomass than LTs in small forest fragments. We found that edge effects were stronger than size effects for standing dead LT abundance; we found more dead trees up to 200 m from forest edge, independently of fragment size. Almost all living LTs had some health problem. The most frequent health problems were partial crown death, liana and termite infestation. Results suggests also that hard-wooded, slow-growing species tend to be replaced by soft-wooded, gap specialist species, coupled with an overall decline in LT density in small forest fragments, as well as in forests that suffered logging. Long-term prospects for these big carbon stocks are not encouraging, and given the low abundance of LTs in more degraded sites, strategies of intervention in large, century-old individual trees should be considered, such as liana infestation control and edge effect mitigation, in order to avoid further biodiversity and carbon losses.

Referências

Alves, L. F., Vieira, S. A., Scaranello, M. A., Camargo, P. B., Santos, F. A. M., Joly, C. A., & Martinelli, L. A. 2010. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). Forest Ecology and Management, 260(5), 679–691. DOI:10.1016/j.foreco.2010.05.023

Arcanjo, F. A. 2017. Biomassa arbórea em sítios de restauração e remanescentes de Mata Atlântica do Sul do Brasil. Master thesis. Departamento de Biologia Animal e Vegetal da Universidade Estadual de Londrina. p. 84.

Auer, C. G. 1996. Doenças de árvores urbanas. EMBRAPA (EMBRAPA-CNPF. Documentos, 28), Colombo. p. 18.

Bianchini, E., Garcia, C. C., Pimenta, J. A., & Torezan, J. M. D. 2010. Slope variation and population structure of tree species from diferente ecological groups in South Brazil. Annals of the Brazilian Academy of Sciences, 82(3), 643–652

Bhering, S. B., Santos, H. G., Manzatto, C. V., Bognola, I., Fasolo, Carvalho, A. P., Potter, O., Aglio, M. L. D., Silva, J. S., Chaffin, C. E., Carvalho Junior, W. 2007. Mapa de solos do estado do Paraná. Rio de Janeiro: Embrapa Solos. p. 73.

Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. –P., Nelson, B. W., Ugawa, H., Puig, H., Riéra, B., & Yamakura, T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 8–99. DOI:10.1007/s00442-005-0100-x

Chave, J., Muller-Landau, H. C., Baker, T. R., Easdale, T. A., Steege, H. ter, & Webb, C. O. 2006. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecological Applications, 16(6), 2356–2367. DOI: 10.1890/1051-0761(2006)016[2356:rapvow]2

Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. 2009. Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366. DOI:10.1111/j.1461-0248.2009.01285.x

Clark, D. B., & Clark, D. A. 1996. Abundance, growth and mortality of very large trees in neotropical lowland rain forest. Forest Ecology and Management, 80(1-3), 235–244. DOI:10.1016/0378-1127(95)03607-5

Christian, K., & Achim, Z. 2008. Applied Econometrics with R. New York: Springer-Verlag. ISBN 978-0-387-77316-2. URL https://CRAN.R-project.org/package=AER

D’Albertas, F., Costa, K., Romitelli, I., Barbosa, J. M., Vieira, S. A., & Metzger, J. P. 2018. Lack of evidence of edge age and additive edge effects on carbon stocks in a tropical forest. Forest Ecology and Management, 407(2018), 57–65. DOI: 10.1016/j.foreco.2017.09.042

D’Angelo, S. A., Andrade, A. C. S., Laurance, S. G., Laurance, W. F., & Mesquita, R. C. G. 2004. Inferred causes of tree mortality in fragmented and intact Amazonian forests. Journal of Tropical Ecology, 20(02), 242–246. DOI: 10.1017/s0266467403001032

Laurance, W. F., & Curran, T. J. 2008. Impacts of wind disturbance on fragmented tropical forests: A review and synthesis. Austral Ecology, 33(4), 399–408. DOI: 10.1111/j.1442-9993.2008.01895.x

Laurance, W. F., Delamônica, P., Laurance, S. G., Vasconcelos, H. L., & Lovejoy, T. E. 2000. Rainforest fragmentation kills big trees. Nature, 404(6780), 836. DOI: 10.1038/35009032

Lindenmayer, D. B., & Laurance, W. F. 2016. The ecology, distribution, conservation and management of large old trees. Biological Reviews, 92(3), 1434–1458. DOI:10.1111/brv.12290

Lindenmayer, D. B, Laurance, W. F., & Franklin, J. F. 2012. Global Decline in Large Old Trees. Science, 388 (2012), 1305–1306. DOI: 10.1126/science.12311070

Lutz, J. A., Furniss, T. J., Johnson, D. J., Davies, S. J., Allen, D., Alonso, A., Anderson-Teixeira, K. J., Andrade, A., Baltzer, J., Becker, K. M. L., Blomdahl, E. M., Bourg, N. A., Bunyavejchewin, S., Burslem, D. F. R. P., Cansler, C. A., Cao, K., Cao, M., Cárdenas, D., Chang, L. W., Chao, K. J., Chao, W. C., Chiang, J. M., Chu, C., Chuyong, G. B., Clay, K., Condit, R., Cordell, S., Dattaraja, H. S., Duque, A., Ewango, C. E. N., Fischer, G. A., Fletcher, C., Freund, J. A., Giardina, C., Germain, S. J., Gilbert, G. S., Hao, Z., Hart, T., Hau, B. C. H., He, F., Hector, A., Howe, R. W., Hsieh, C. F., Hu, Y. –H., Hubbell, S. P., Inman-Narahari, F. M., Itoh, A., Janík, D., Kassim, A. R., Kenfack, D., Korte, L., Král, K., Larson, A. J., Li, Y., Lin, Y., Liu, S., Lum, S., Ma, K., Makana, J. R., Malhi, Y., McMahon, S. M., McShea, W. J., Memiaghe, H. R., Mi, X., Morecroft, M., Musili, P. M., Myers, J. A., Novotny, V., Oliveira, A., Ong, P., Orwig, D. A., Ostertag, R., Parker, G. G., Patankar, R., Phillips, R. P., Reynolds, G., Sack, L., Song, G. Z. M., Su, S. H., Sukumar, R., Sun, I. F., Suresh, H. S., Swanson, M. E., Tan, S., Thomas, D. W., Thompson, J., Uriarte, M., Valencia, R., Vicentini, A., Tomáš,V., Wang, X., Weiblen, G. D., Wolf, A., Wu, S. H., Xu, H., Yakamura, T., Yap, S., & Zimmerman, J. K. 2018. Global importance of large-diameter trees. Global Ecology and Biogeography, 27 (7), 849–864. DOI: 10.1111/geb.12747

Melito, M., Metzger, J. P., & de Oliveira, A. A. 2017. Landscape-level effects on aboveground biomass of tropical forests: A conceptual framework. Global Change Biology, 24(2), 597–607. DOI: 10.1111/gcb.13970

Nitsche, R. P.; Caramori, H. P., Ricce, S. W., Pinto, F. D. L. 2019. Atlas Climático do Estado do Paraná. IAPAR, Londrina, PR. Retrieved from http://www.iapar.br/pagina-677.html

Pearson, T., Walker, S., & Brown, S. 2005. Source Book for Land Use, Land-Use Change and Forestry Projects. Winrock International, Arlington. p. 57

Peck, M. R., Kaina, G. S., Hazell, R. J., Isua, B., Alok, C., Paul, L., & Stewart, A. J. A. 2017. Estimating carbon stock in lowland Papua New Guinean forest: Low density of large trees results in lower than global average carbon stock. Austral Ecology, 42(8), 964–975. DOI: 10.1111/aec.12525

Phillips, O. L., Sullivan, M. J. P., Baker, T. R., Monteagudo Mendoza, A., Vargas, P. N., & Vásquez, R. 2019. Species Matter: Wood Density Influences Tropical Forest Biomass at Multiple Scales. Surveys in Geophysics, 40(4), 913–935. DOI: 10.1007/s10712-019-09540-0

Pütz, S., Groeneveld, J., Henle, K., Knogge, C., Martensen, A. C., Metz, M., Metzger, J. P., Ribeiro, M. C., Paula, M. D., & Huth, A. 2014. Long term carbon loss in fragmented Neotropical forests. Nature Communications, 5(1), 1–8. DOI: 10.1038/ncomms6037

Putz, F. E. 1984. The Natural history of lianas on Barro Colorado Island, Panama. Ecology, 65 (6), 1713–1724. DOI: 10.2307/1937767

Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J., & Hirota, M. M. 2009. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142(6), 1141–1153. DOI: 10.1016/j.biocon.2009.02.02

R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

Shimamoto, Y.C., Botosso, C. P., & Marques, M.C.M. 2014. How much carbon is sequestered during the restoration of tropical forests? Estimates from tree species in the Brazilian Atlantic forest. Forest Ecology and Management, 329(2014), 1–9. DOI: 10.1016/j.foreco.2014.06.002

Slik, J. W. F., Paoli, G., McGuire, K., Amaral, I., Barroso, J., Bastian, M., Blanc, L., Bongers, F., Boundja, P., Clarck, C., Collins, M., Dauby, G., Ding, Y., Doucet, J. –L., Eler, E., Ferreira, L., Forshed, O., Fredriksson, G., Gillet, J. –F., Harris, D., Leal, M., Laumonier, Y., Malhi, Y., Mansor, A., Martin, E., Miyamoto, K., Araujo-Murakami, A., Nagamasu, H., Nilus, R., Nurtjahya, E., Oliveira, A., Onrizal, O., Parada-Gutierrez, A., Permana, A., Poorter, L., Poulsen, J., Hirma, A. R., Reitsma, J., Rovero, F., Rozak, A., Sheil, D., Javier, S. E., Silveira, M., Spironelo, W., Steege, H. T., Stevart, T., Navarro-Aguilar, G. H., Sunderland, T., Suzuki, E., Tang, J., Theilade, I., Heijden, G., Valkenburg, J., Do, T. V., Vilanova, E., Vos, V., Wich, S., Wöll, H., Yoneda, T., Zang, R., Zang, M. G., & Zweifel, N. 2013. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 22(12), 1261–1271. DOI: 10.1111/geb.12092

Schomaker, M. E., Zarnoch, S. J., Bechtold, W. A., Latelle, D. J., Burkman, W. G., & Cox, S. M. 2007. Crown-Condition Classification: A Guide to Data Collection and Analysis. Forest service: Southern Research Station. Asheville. p.83

Sist, P., Mazzei, L., Blanc, L., & Rutishauser, E. 2014. Large trees as key elements of carbon storage and dynamics after selective logging in the Eastern Amazon. Forest Ecology and Management, 318(2014), 103–109. DOI: 10.1016/j.foreco.2014.01.005

Smith, I. A., Hutyra, L. R., Reinmann, A. B., Marrs, J. K., & Thompson, J. R. 2018. Piecing together the fragments: elucidating edge effects on forest carbon dynamics. Frontiers in Ecology and the Environment, 16(4), 213–221. DOI:10.1002/fee.1793

Tabarelli, M., Mantovani, W., & Peres, C. A. 1999. Effects of habitat fragmentation on plant guild structure in the montane Atlantic forest of southeastern Brazil. Biological Conservation, 91(2-3), 119–127. DOI: 10.1016/s0006-3207(99)00085-3

Tattar, T. A. 2013. Diseases of Shade Trees. Academic Press (Ed.), San Diego: p. 391

Venables, W. N. & Ripley, B. D. 2002. Modern Applied Statistics with S. Fourth Edition. New York: Springer: p. 498. DOI: 10.1007/978-0-387-21706-2

Villela, D. M., Nascimento, M. T., Aragão, L. E. O. C., & da Gama, D. M. 2006. Effect of selective logging on forest structure and nutrient cycling in a seasonally dry Brazilian Atlantic forest. Journal of Biogeography, 33(3), 506–516. DOI:10.1111/j.1365-2699.2005.01453.x

Wekesa, C., Kirui, B. K., Maranga, E. K., & Muturi, G. M. 2019. Variations in forest structure, tree species diversity and above-ground biomass in edges to interior cores of fragmented forest patches of Taita Hills, Kenya. Forest Ecology and Management, 440(2019), 48–60. DOI: 10.1016/j.foreco.2019.03.011

Wright, S. J., Muller-Landau, H. C., Condit, R., & Hubbell, S. P. 2003. Gap-Dependent recruitment, realized vital rates, and size distributions of tropical trees. Ecology, 84(12), 3174–3185. DOI: 10.1890/02-0038

Zotarelli, H. G. S., Molina, J. M. P., Ribeiro, J. E. L. S., & Sofia, S. H. 2018. A commensal network of epiphytic orchids and host trees in an Atlantic Forest remnant: A case study revealing the important role of large trees in the network structure. Austral Ecology. 44(1), 114–125. DOI:10.1111/aec.12659

Zuur, A.F., Ieno, E. N., Walker, J. N., Saveliev, A. A., & Smith, M. G. 2009. Mixed Effects Models and Extensions in Ecology with R, Statistics for Biology and Health. M. Gail, K. Krickeberg, J. M. Samet, A. Tsiatis, W. Wong (Eds.), New Work: Springer: p. 579. DOI:10.1007/978-0-387-87458-6 2

Publicado

2020-06-15