IMPORTÂNCIA DE MICROHABITATS NA OCORRÊNCIA DE ESPÉCIES DE EPHEMEROPTERA E TRICHOPTERA EM UMA ILHA NO RIO XINGU
DOI:
https://doi.org/10.4257/oeco.2021.2503.03Palavras-chave:
Amazon, aquatic insects, dams, rock, puddles.Resumo
Este trabalho descreveu a abundância, riqueza e composição de gêneros e os grupos funcionais alimentares (GFA) de Ephemeroptera e Trichoptera (ET), em diferentes microhabitats de uma ilha fluvial, na Volta Grande do rio Xingu, Amazônia brasileira. Foram coletados insetos aquáticos em 30 amostras localizadas em poças situadas no interior da ilha (substrato de rochas); e outras 30 amostras situadas na região litorânea da ilha (substrato de seixos). As diferentes facetas da diversidade (abundância, riqueza e composição de gêneros e GFA) foram comparadas entre as amostras de poça com substrato rocha e as da região litorânea com substrato seixo. No total, foram coletados 56 indivíduos distribuídos em 15 gêneros de ET. A maior riqueza estimada de gêneros e o maior número de indivíduos ocorreram nas rochas dos ambientes de poça. A composição de gêneros diferiu entre as rochas dos ambientes de poças, e os seixos dos ambientes litorâneos, sendo a comunidade desse último mais homogênea. Existiam mais organismos raspadores distribuídos predominante nas rochas dos ambientes de poças e organismos filtradores dispostos predominantemente nos seixos dos ambientes litorâneos. A distribuição dos raspadores relacionou-se com a disponibilidade de alimento, uma vez que a ilha possui pouca vegetação e a luz sobre as rochas é propícia para a colonização por biofilme, seu principal recurso alimentar. Na região litorânea, a maior distribuição de filtradores deve-se a maior quantidade de partículas finas suspensas na água, seu principal recurso alimentar. Nossos resultados demonstraram que mesmo em ambientes espacialmente próximos, como em uma pequena ilha, as diferenças de disponibilidade de recursos alimentares em diferentes microhabitats podem influenciar na distribuição em múltiplas facetas da diversidade dos organismos estudados. Portanto, mesmo em ambientes dinâmicos como os grandes rios, a manutenção dos microhabitats é importante para as comunidades de insetos aquáticos.
IMPORTANCE OF MICROHABITATS IN THE OCCURRENCE OF EPHEMEROPTERA AND TRICHOPTERA SPECIES IN AN ISLAND IN RIO XINGU. This work described the abundance, richness and composition of genera and the functional food groups (GFA) of Ephemeroptera and Trichoptera (ET), in different microhabitats of a fluvial island, in Volta Grande of the Xingu River, Brazilian Amazon. Aquatic insects were collected from 30 samples located in puddles situated in the interior of the island (rocks as substrate); and another 30 samples located in the coastal margin of the island (pebble as substrate). The different facets of diversity (abundance, richness and composition of genera and GFA) were compared between puddle samples with rock substrate and those from the coastal region with pebble substrate. In total, 56 individuals were collected, distributed in 15 genera ET. The greatest estimated genera richness and the largest number of individuals occurred in the rocks of the puddle environments. The composition of genera differed between the rocks in the puddle environments and the pebbles in the coastal environments, with the community of the latter being more homogeneous. There were more scraper organisms distributed predominantly in the rocks of the puddle environments and filtering organisms arranged predominantly in the pebbles of the coastal environments. The distribution of scrapers is related to the availability of food, since the island has little vegetation and the light on the rocks is favorable for colonization by biofilm, its main food resource. In the coastal region, the greater distribution of filters is related to the greater number of fine particles suspended in water, its main food resource. The results demonstrate that even in spatially close environments, such as on a small island, differences in the availability of food resources in different microhabitats can influence the distribution in multiple facets of diversity. Thus, even in dynamic environments such as large rivers, maintaining microhabitats is important for aquatic insect communities.Referências
Allan, J. D. 1995. Stream ecology. Structure and function of running waters. Chapman & Hall, London. p. 388.
Anderson, M. 2005. PERMANOVA, Permutational multivariate analysis of variance. A computer program. Wiley StatsRef: Statistics Reference Online. DOI: 10.1002/9781118445112.stat07841
Anderson, M. J. 2005. PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. Departmen of Stattisitics. Department of Statistics.
Angeli, K. B., Rozário, E. M. M., & Salles, F. F. 2015. Checklist of Ephemeroptera (Insecta) from São Mateus River Basin, Espírito Santo, Brazil. Revista Brasileira de Entomologia, 59(3), 197–204. DOI: 10.1016/j.rbe.2015.06.004
Baptista, D. F., Buss, D. F., Dias, L. G., Nessimian, J. L., Da Silva, E. R., De Moraes Neto, A. H. A., De Carvalho, S. N., De Oliveira, M. A., & Andrade, L. R. 2006. Functional feeding groups of Brazilian Ephemeroptera nymphs: Ultrastructure of mouthparts. Annales de Limnologie, 42(6), 87–96. DOI: 10.1051/limn/2006013
Baptista, D. F., Dorvillé, L. F., Buss, D. F., & Nessiamian, J. L. 2001. Spatial and temporal organization of aquatic insects’ assemblages in the longitudinal gradient of a tropical river. Revista Brasleira de Biologia, 61(2), 295–304. DOI: 10.1590/s0034-71082001000200012
Barlow, J., França, F., Gardner, T. A., Hicks, C. C., Lennox, G. D., Berenguer, E., Castello, L., Economo, E. P., Ferreira, J., Guénard, B., Gontijo Leal, C., Isaac, V., Lees, A. C., Parr, C. L., Wilson, S. K., Young, P. J., & Graham, N. A. J. 2018. The future of hyperdiverse tropical ecosystems. Nature, 559, 517–526. DOI: 10.1038/s41586-018-0301-1
Biggs, B. J. F., Stevenson, R. J., & Lowe, R. L. 1998. A habitat matrix conceptual model for stream periphyton. Archiv Fur Hydrobiologie, 143(1), 21–56. DOI: 10.1127/archiv-hydrobiol/143/1998/21
Brasil, L. S., Juen, L. Batista, J. D., Pavan, M. G. & Cabette, H. S. R. 2014. Longitudinal Distribution of the Functional Feeding Groups of Aquatic Insects in Streams of the Brazilian Cerrado Savanna. Neotropical Entomology, 43(5), 421–428. DOI: 10.1007/s13744-014-0234-9.
Brito, J. G., Martins, R. T., Oliveira, V. C., Hamada, N., Nessimian, J. L., Hughes, R. M., Ferraz, S. F. B., & de Paula, F. R. 2018. Biological indicators of diversity in tropical streams: Congruence in the similarity of invertebrate assemblages. Ecological Indicators, 85, 85–92. DOI: 10.1016/j.ecolind.2017.09.001
Castro, D. M. P., Dolédec, S., & Callisto, M. 2017. Landscape variables influence taxonomic and trait composition of insect assemblages in Neotropical savanna streams. Freshwater Biology, 62(8), 1472–1486. DOI: 10.1111/fwb.12961
Cummins, K W, & Klug, M. J. 1979. Feeding Ecology of Stream Invertebrates. Annual Review of Ecology and Systematics, 10(1),147–172. DOI: 10.1146/annurev.es.10.110179.001051
Cummins, K W., & Lauff, G. H. 1969. The influence of substrate particle size on the microdistribution of stream macrobenthos. Hydrobiologia, 34(2), 145–181. DOI: 10.1007/BF00141925
Cummins, K W., Merritt, R. W., & Andrade, P. C. N. 2005. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Studies on Neotropical Fauna and Environment, 40(1), 69–89. DOI: 10.1080/01650520400025720
Cummins, K. W. 1974. Structure and function of stream ecosystems. BioScience, 24(11), 631–641.
De Marco, P., & Vianna, D. M. 2005. Distribuição do esforço de coleta de Odonata no Brasil - Subsídios para escolha de áreas prioritárias para levantamentos faunísticos. Lundiana, 6, 13–26.
Dedieu, N., Rhone, M., Vigouroux, R., & Céréghino, R. 2015. Assessing the impact of gold mining in headwater streams of Eastern Amazonia using Ephemeroptera assemblages and biological traits. Ecological Indicators, 52, 332–340. DOI: 10.1016/j.ecolind.2014.12.012
Domínguez, E. 2006. Ephemeroptera de América Del Sur. 2nd ed. Bulgaria: Pensoft Publishers: p. 646.
Duan, X., Wang, Z. & Tian, S. 2008. Effect of streambed substrate on macroinvertebrate biodiversity. Frontiers of Environmental Science & Engineering in China, 2(1), 122–128. DOI: 10.1007/s11783-008-0023-y
Faria, A. P. J., Ligeiro, R., Callisto, M., & Juen, L. 2017. Response of aquatic insect assemblages to the activities of traditional populations in eastern Amazonia. Hydrobiologia, 802, 39–51. DOI: 10.1007/s10750-017-3238-8
Feminella, J. W., & Hawkins, C. P. 1995. Interactions between stream herbivores and periphyton: A quantitative analysis of past experiments. Journal of the North American Benthological Society, 14(4), 465–509. DOI: 10.2307/1467536
Giller, P.S. & Malmqvist, B. 1998. The Biology of streams and rivers: Biology of Habitat. Oxford: Oxford University Press: p. 96.
Heltshe, J. F., & Forrester, N. E. 1983. Estimating species richness using the jackknife procedure. Biometrics, 39(1), 1–11. DOI: 10.2307/2530802
Hershey, A. E., Lamberti, G. A., Chaloner, D. T., & Northington, R. M. 2010. Aquatic insect ecology. In Ecology and classification of North American freshwater invertebrates. Academic Press: p. 659.
Hickisch, R., Hodgetts, T., Johnson, P. J., Sillero-Zubiri, C., Tockner, K., & Macdonald, D. W. 2019. Effects of publication bias on conservation planning. Conservation Biology, 33, 1151–1163. DOI: 10.1111/cobi.13326
Juen, L., Brasil, L. S., Salles, F. F., Batista, J. D., & Cabette, H. S. R. 2017. Mayfly assemblage structure of the Pantanal Mortes–Araguaia flood plain. Marine and Freshwater Research, 68(11), 2156–2162. DOI: 10.1071/MF17013
Lees, A. C., Peres, C. A., Fearnside, P. M., Schneider, M., & Zuanon, J. A. S. 2016. Hydropower and the future of Amazonian biodiversity. Biodiversity and Conservation, 25, 451–466. DOI: 10.1007/s10531-016-1072-3
Lock, M., Costerton, J., Ventullo, R., Wallace, R., & Charlton, S. 1984. River epilithon: toward a structural-functional model. Oikos, 42(1), 10–22.
Luiza-Andrade, A., Brasil, L. S., Benone, N. L., Shimano, Y., Farias, A. P. J., Montag, L. F., Dolédec, S., & Juen, L. 2017. Influence of oil palm monoculture on the taxonomic and functional composition of aquatic insect communities in eastern Brazilian Amazonia. Ecological Indicators, 82, 478–483. DOI: 10.1016/j.ecolind.2017.07.006
Magalhães, S. B. & Hernándes, F. M. 2009. Painel de Especialistas: análise crítica do Estudo de Impacto Ambiental do Aproveitamento Hidrelétrico de Belo Monte. Belém: p. 230.
Merritt, R. W. & Cummins, K.W. 1996. An introduction to the aquatic insects of north America. 2nd ed. Dubuque: Kendall Hunt Publishing Co: p. 826.
Miguel, T. B., Calvão, L. B., Vital, M. V. C., & Juen, L. 2017. A scientometric study of the order Odonata with special attention to Brazil. International Journal of Odonatology. 20(1), 1–16. DOI: 10.1080/13887890.2017.1286267
Minshall, G.W. & Minshall, J.N. 1977. Microdistribution of benthic invertebrates in a Rocky Mountain (U.S.A.) stream. Hydrobiologia 55, 231–249.
Norte Energia AS. 2011. PBA: Plano básico ambiental, versão final, Setembro de 2011. – Norte Energia SA,: Rio de Janeiro, Brazil: 7 vols. + annexes.
Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P. & McGlinn, D. 2019. vegan: Community Ecology Package. R package version 2.5-6. Vienna: R Foundation for Statistical Computing. https://CRAN.R-project.org/package=vegan
Peel, M. C., Finlayson, B. L., & McMahon, T. A. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences. DOI: 10.5194/hess-11-1633-2007
Pes, A.M., Moreira Santos, A.P., Barcelos-Silva, P. & Camargos, L.M. 2014. Ordem Trichoptera. In: N. Hamada JL, Nessimian J & Querino RB (Eds.), Insetos Aquáticos na Amazônia Brasileira: taxonomia, biologia e ecologia. pp. 391–433. Manaus: Editora do INPA: p. 724
R Core Team. 2019. R: A language and environment for statistical computing (Version 3.0. 2)[Computer software]. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Rosenberg, V. H., Resh, D. M. 1993. Freshwater biomonitoring and benthic macroinvertebrates. 1st ed. New York: Chapman & Hall: p. 488.
Resh, V. H., & Unzicker, J. D. 1975. Water quality monitoring and aquatic organisms: the importance of species identification. Journal of the Water Pollution Control Federation. 47(1), 9–19.
Schmitt, R., Silva, A. L. L., Soares, L. C. M., Petrucio, M. M. & Siegloch, A. E. 2020. Influence of microhabitat on diversity and distribution of Ephemeroptera, Plecoptera, and Trichoptera in subtropical forest streams. Studies on Neotropical Fauna and Environment, 55(2), 129–138. DOI: 10.1080/01650521.2019.1704984
Shimano, Y., Salles, F. F., & Juen, L. 2013. Study of the mayfly order Ephemeroptera (insecta) in Brazil: A scienciometric review. Revista Brasileira de Entomologia, 57, 359–364. DOI: 10.1590/S0085-56262013005000043
Shimano, Y., Salles, F. F., Faria, L. R. R., Cabette, H. S. R., & Nogueira, D. S. 2012. Distribuição espacial das guildas tróficas e estruturação da comunidade de Ephemeroptera (Insecta) em córregos do Cerrado de Mato Grosso, Brasil. Iheringia - Serie Zoologia, 102(2), 187–196. DOI: 10.1590/S0073-47212012000200011
Sioli, H. 1984. The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. Internationale Revue der Gesamten Hydrobiologie und Hydrographie, 56nd ed: p. 762.
Southwood, T. R. E. 1977. Habitat as the template for ecological strategies? The Journal of Animal Ecology, 46, 336–365. DOI: 10.2307/3817
Statzner, B., & Higler, B. 1986. Stream hydraulics as a major determinant of benthic invertebrate zonation patterns. Freshwater Biology, 16(1), 127–139. DOI: 10.1111/j.1365-2427.1986.tb00954.x
Strahler, A. N. 1957. Quantitative analysis of watershed geomorphology. Transactions of the American geophysical Union, 38(6), 913–920. DOI: 10.1029/TR038i006p00913
Thorp J.H., Thoms M.C. & Delong M.D. 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications, 147, 123–147.
Townsend, C. 1989. The patch dynamics concept of stream community ecology. Journal of the North American Benthological Society, 8(1), 36–50. DOI:10.2307/1467400
Townsend, C. R., & Hildrew, A. G. 1994. Species traits in relation to a habitat templet for river systems. Freshwater Biology, 31(3), 265–275. DOI: 10.1111/j.1365-2427.1994.tb01740.x
Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37(1), 130–137. DOI: 10.1139/f80-017
Wallace, J.B., & Anderson, N. H. 1995. Habitat, life history, and behavioral adaptations of aquatic insects, In: Merritt, R.W., and K.W. Cummins (eds.), An Introduction to the Aquatic Insects of North America: pp. 41–73. Dubuque, Iowa: Kendall/Hunt Publishing Company.
Whittaker, R. J., Araújo, M. B., Jepson, P., Ladle, R. J., Watson, J, E. M., & Willis, K. J. 2005. Conservation Biogeography: Assessment and Prospect. Diversity and Distributions, 11(1), 3–23. DOI: 10.1111/j.1366-9516.2005.00143.x
Zar, J. H. 2010. Biostatistical Analysis. 5nd ed. Upsaddler Road: Prentice Hall: p. 944.