MACROECOLOGIA DE PEIXES DE RIACHOS BRASILEIROS
DOI:
https://doi.org/10.4257/oeco.2021.2502.18Palavras-chave:
Brazilian biomes, alfa diversity, beta diversity, historical factors, freshwater fish, riverine network, species richnessResumo
Estudos em Macroecologia lidam com padrões e processos em amplas escalas (espacial, temporal e taxonômica) que são muito abrangentes para serem estudados com experimentos replicados, manipulativos e controlados como é feito tradicionalmente na ecologia. Estudos macroecológicos têm sido primordialmente realizados com foco em vertebrados e plantas terrestres, enquanto os sistemas marinhos e principalmente os de água doce permanecem ainda pouco explorados. O objetivo deste trabalho é destacar alguns avanços dos campos de estudo da macroecologia no tocante a padrões espaciais de peixes em riachos brasileiros (padrões de diversidade alfa e beta). Por meio da coleta de informações de ocorrência de espécies de riacho em larga escala, nós encontramos maiores valores de riqueza total na Amazônia, no Cerrado e na Mata Atlântica e uma riqueza média geral de sete espécies por sub-bacia. Além disso, a composição de espécies foi diferente entre biomas, sendo evidenciados também elevados valores de substituição de espécies dentro deles. Em adição aos resultados obtidos, apresentaremos uma discussão que guiará o leitor à compreensão das possíveis causas e mecanismos subjacentes aos padrões encontrados em um contexto macroecológico.
MACROECOLOGY OF BRAZILIAN STREAM FISHES: Studies in Macroecology deal with patterns and processes on large scale (spatial, temporal and taxonomic) and that by definition are too comprehensive to be studied with replicated, manipulative and controlled experiments as it has been traditionally performed in Ecology. Macroecological studies are still conducted with a focus on terrestrial vertebrates and plants, while marine systems and especially freshwater systems remain little explored. The objective of this study is to highlight some advances in the fields of study of aquatic macroecology (spatial patterns of alpha and beta diversity), using fish from Brazilian streams as the object of analysis. By gathering stream fish occurrence information from large scale data sets, we found high total richness in Amazonia, Cerrado and Atlantic Forest, and found on average seven species per sampling unit, with small variation related to the identity of the analyzed biomes. Yet, species composition is distinct between biomes and we found high turnover levels within them. We will guide the reader through possible causes and mechanisms of the identified patterns.Referências
Albert, J. S., Tagliacollo, V. A., & Dagosta, F. 2020. Diversification of Neotropical Freshwater Fishes. Annual Review of Ecology, Evolution, and Systematics, 51, In press. DOI: 10.1146/annurev-ecolsys-011620-031032
Allen, A. P., Brown, J. H., & Gillooly, J. F. 2002. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science, 297(5586), 1545–1548. DOI: 10.1126/science.1072380
Altermatt, F. 2013. Diversity in riverine metacommunities: a network perspective. Aquatic Ecology, 47(3), 365–377. DOI: 10.1007/s10452-013-9450-3
Alves, C. B. M. A., Pompeu, P. S., Mazzoni, R., & Brito, M. F. G. 2021. Avanços em métodos de coleta de peixes e caracterização de habitat de riachos tropicais. Oecologia Australis, 25 (02), 247–265. DOI: 10.4257/oeco.2021.2502.03
Andrade, A. F. A. de, Velazco, S. J. E., & De Marco Júnior, P. 2020. ENMTML: An R package for a straightforward construction of complex ecological niche models. Environmental Modelling & Software, 125, 104615. DOI: 10.1016/j.envsoft.2019.104615
Aquino, P. P. U., & Colli, G. R. 2016. Headwater captures and the phylogenetic structure of freshwater fish assemblages: a case study in central Brazil. Journal of Biogeography, 44(1), 207–216. DOI: 10.1111/jbi.12870
Araújo, E. S., Marques, E. E., Freitas, I. S., Neuberger, A. L., Fernandes, R., & Pelicice, F. M. 2013. Changes in distance decay relationships after river regulation: similarity among fish assemblages in a large Amazonian river. Ecology of Freshwater Fish, 22(4), 543–552. DOI:
Bailly, D., Cassemiro, F. A. S., Agostinho, C. S., Marques, E. E., & Agostinho, A. A. 2014. The metabolic theory of ecology convincingly explains the latitudinal diversity gradient of Neotropical freshwater fish. Ecology, 95(2), 553–562. DOI: 10.1890/13-0483.1
Bailly, D., Cassemiro, F. A. S., Winemiller, K. O., Diniz-Filho, J. A. F., & Agostinho, A. A. 2016. Diversity gradients of Neotropical freshwater fish: evidence of multiple underlying factors in human-modified systems. Journal of Biogeography, 43(8), 1679–1689. DOI: 10.1111/jbi.12749
Barbosa, F. G., Schneck, F., & Melo, A. S. 2012. Use of ecological niche models to predict the distribution of invasive species: a scientometric analysis. Brazilian Journal of Biology = Revista Brasleira De Biologia, 72(4), 821–829. DOI: 10.1590/s1519-69842012000500007
Baselga, A. 2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography, 21(12), 1223–1232. DOI: 10.1111/j.1466-8238.2011.00756.x
Beck, J., Ballesteros‐Mejia, L., Buchmann, C. M., Dengler, J., Fritz, S. A., Gruber, B., Hof, C., Jansen, F., Knapp, S., Kreft, H., Schneider, A.-K., Winter, M., & Dormann, C. F. 2012. What’s on the horizon for macroecology? Ecography, 35(8). DOI: 10.1111/j.1600-0587.2012.07364.x
Benone, N. & Montag, L. 2021. Métodos quantitativos para mensurar a diversidade taxonômica em peixes de riachos. Oecologia Australis, 25 (02), 399–415. DOI: 10.4257/oeco.2021.2502.11
Borges, P. P., Dias, M. S., Carvalho, F. R., Casatti, L., Pompeu, P. S., Cetra, M., Tejerina-Garro, F. L., Súarez, Y. R., Nabout, J. C., & Teresa, F. B. 2020. Stream fish metacommunity organisation across a Neotropical ecoregion: The role of environment, anthropogenic impact and dispersal-based processes. PLOS ONE, 15(5), e0233733. DOI: 10.1371/journal.pone.0233733
Brown, J. H. 1995. Macroecology. 1st ed.University of Chicago Press.
Brown, J. H. 2014. Why are there so many species in the tropics? Journal of Biogeography, 41(1), 8–22. DOI: 10.1111/jbi.12228
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. 2004. Toward a metabolic theory of ecology. Ecology, 85(7), 1771–1789. DOI: 10.1890/03-9000
Brown, J. H., & Maurer, B. A. 1987. Evolution of species assemblages: effects of energetic constraints and species dynamics on the diversification of the North American avifauna. The American Naturalist, 130(1), 1–17.
Brum, F. T., Graham, C. H., Costa, G. C., Hedges, S. B., Penone, C., Radeloff, V. C., Rondinini, C., Loyola, R., & Davidson, A. D. 2017. Global priorities for conservation across multiple dimensions of mammalian diversity. Proceedings of the National Academy of Sciences, 114(29), 7641–7646. DOI: 10.1073/pnas.1706461114
Buckup, P. A., Menezes, N. A., & Ghazzi, M. S. 2007. Catálogo das espécies de peixes de água doce do Brasil. Rio de Janeiro: Museu Nacional.
Carnaval, A. C., Waltari, E., Rodrigues, M. T., Rosauer, D., VanDerWal, J., Damasceno, R., Prates, I., Strangas, M., Spanos, Z., Rivera, D., Pie, M. R., Firkowski, C. R., Bornschein, M. R., Ribeiro, L. F., & Moritz, C. 2014. Prediction of phylogeographic endemism in an environmentally complex biome. Proceedings of the Royal Society B: Biological Sciences, 281(1792), 20141461. DOI: 10.1098/rspb.2014.1461
Carrara, F., Altermatt, F., Rodriguez-Iturbe, I., & Rinaldo, A. 2012. Dendritic connectivity controls biodiversity patterns in experimental metacommunities. Proceedings of the National Academy of Sciences, 109(15), 5761–5766. DOI: 10.1073/pnas.1119651109
Carvajal-Quintero, J. D., Januchowski‐Hartley, S. R., Maldonado‐Ocampo, J. A., Jézéquel, C., Delgado, J., & Tedesco, P. A. 2017. Damming Fragments Species’ Ranges and Heightens Extinction Risk. Conservation Letters, 10(6), 708–716. DOI: https://doi.org/10.1111/conl.12336
Carvajal-Quintero, J.D., Villalobos, F., Oberdorff, T., Grenouillet, G., Brosse, S., Hugueny, B., Jézéquel, C., & Tedesco, P. A. 2019. Drainage network position and historical connectivity explain global patterns in freshwater fishes’ range size. Proceedings of the National Academy of Sciences, 201902484. DOI: 10.1073/pnas.1902484116
Cassemiro, F. A. S., Bailly, D., da Graça, W. J., & Agostinho, A. A. 2018. The invasive potential of tilapias (Osteichthyes, Cichlidae) in the Americas. Hydrobiologia, 817(1), 133–154. DOI: 10.1007/s10750-017-3471-1
Cassemiro, F. A. S., & Diniz-Filho, J. A. F. 2010. Deviations from predictions of the metabolic theory of ecology can be explained by violations of assumptions. Ecology, 91(12), 3729–3738. DOI: 10.1890/09-1434.1
Castro, R.M.C. 1999. Evolução da ictiofauna de riachos sul-americanos: padrões gerais e possíveis processos causais. In: Caramaschi, E.P., Mazzoni, R. & P. Peres-Neto: Ecologia de Peixe de Riacho. Série Oecologia Brasiliensis, vol. VI. PPGE-UFRJ p.139–155.
Castro, R. M. C. 2021. Evolução da ictiofauna de riachos sul-americanos (Castro, 1999) revisitada após mais de duas décadas: padrões gerais e possíveis processos causais. Oecologia Australis,25(02): 232–246. DOI: 10.4257/oeco.2021.2502.02
Cheng, H., Sinha, A., Cruz, F. W., Wang, X., Edwards, R. L., d’Horta, F. M., Ribas, C. C., Vuille, M., Stott, L. D., & Auler, A. S. 2013. Climate change patterns in Amazonia and biodiversity. Nature Communications, 4, ncomms2415. DOI: 10.1038/ncomms2415
Colwell, R. K., & Lees, D. C. 2000. The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology & Evolution, 15(2), 70–76. DOI: 10.1016/S0169-5347(99)01767-X
Culina, A., Crowther, T. W., Ramakers, J. J. C., Gienapp, P., & Visser, M. E. 2018. How to do meta-analysis of open datasets. Nature Ecology & Evolution, 2(7), 1053–1056. DOI: 10.1038/s41559-018-0579-2
Currie, D. J. 1991. Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist, 137(1), 27–49.
Dagosta, F. C. P., & Pinna, M. de. 2017. Biogeography of Amazonian fishes: deconstructing river basins as biogeographic units. Neotropical Ichthyology, 15(3), e170034. DOI: 10.1590/1982-0224-20170034
Dala-Corte, R. B., Becker, F. G., & Melo, A. S. 2017. The importance of metacommunity processes for long-term turnover of riffle-dwelling fish assemblages depends on spatial position within a dendritic network. Canadian Journal of Fisheries and Aquatic Sciences, 74(1), 101–115. DOI: 10.1139/cjfas-2016-0049
Dala-Corte, R. B., Melo, A. S., Siqueira, T., Bini, L. M., Martins, R. T., Cunico, A. M., Pes, A. M., Magalhães, A. L. B., Godoy, B. S., Leal, C. G., Monteiro‐Júnior, C. S., Stenert, C., Castro, D. M. P., Macedo, D. R., Lima‐Junior, D. P., Gubiani, É. A., Massariol, F. C., Teresa, F. B., Becker, F. G., Souza, F. N., Valente‐Neto, F., Souza, F. L., Salles, F. F., Brejão, G. L., Brito, J. G., Vitule, J. R. S., Simião‐Ferreira, J., Dias‐Silva, K., Albuquerque, L., Juen, L., Maltchik, L., Casatti, L., Montag, L., Rodrigues, M. E., Callisto, M., Nogueira, M. A. M., Santos, M. R., Hamada, N., Pamplin, P. A. Z., Pompeu, P. S., Leitão, R. P., Ruaro, R., Mariano, R., Couceiro, S. R. M., Abilhoa, V., Oliveira, V. C., Shimano, Y., Moretto, Y., Súarez, Y. R., & Roque, F. de O. 2020. Thresholds of freshwater biodiversity in response to riparian vegetation loss in the Neotropical region. Journal of Applied Ecology, 57(7), 1391–1402. DOI: https://doi.org/10.1111/1365-2664.13657
Dias, M. S., Cornu, J.-F., Oberdorff, T., Lasso, C. A., & Tedesco, P. A. 2013. Natural fragmentation in river networks as a driver of speciation for freshwater fishes. Ecography, 36(6), 683–689. DOI: 10.1111/j.1600-0587.2012.07724.x
Dias, M. S., Oberdorff, T., Hugueny, B., Leprieur, F., Jézéquel, C., Cornu, J.-F., Brosse, S., Grenouillet, G., & Tedesco, P. A. 2014. Global imprint of historical connectivity on freshwater fish biodiversity. Ecology Letters, 17(9), 1130–1140. DOI: 10.1111/ele.12319
Dias, M. S., Zuanon, J., Couto, T. B. A., Carvalho, M., Carvalho, L. N., Espírito-Santo, H. M. V., Frederico, R., Leitão, R. P., Mortati, A. F., Pires, T. H. S., Torrente-Vilara, G., Vale, J. do, Anjos, M. B. dos, Mendonça, F. P., & Tedesco, P. A. 2016. Trends in studies of Brazilian stream fish assemblages. Natureza & Conservação, 14(2), 106–111. DOI: 10.1016/j.ncon.2016.06.003
Fagan, W. F. 2002. Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology, 83(12), 3243–3249. DOI: 10.1890/0012-9658(2002)083[3243:CFAERI]2.0.CO;2
Fishnet2. 2021. Fishnet2 portal. Disponível em: http://www.fishnet2.org (05/2021).
Freitas, T. M. S., Montag, L. F. A., Jr, P. D. M., & Hortal, J. 2020. How reliable are species identifications in biodiversity big data? Evaluating the records of a neotropical fish family in online repositories. Systematics and Biodiversity, 18(2), 181–191. DOI: 10.1080/14772000.2020.1730473
Fricke, R., Eschmeyer, W. N., & van der Laan, R. 2021. Eschmyer’s catalog of fishes: genera, species, references. (Retrieved on from http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp).
Froese, R., & Pauly, D. 2021. FishBase. (Retrieved on from http://www.fishbase.org).
Gaston, K. J., & Blackburn, T. M. 2000. Pattern and process in macroecology.Blackwell Science Ltd.
Gause, G. F. 1932. Experimental Studies on the Struggle for Existence. Journal of Experimental Biology, 9, 389–402.
GBIF. 2021. Global Biodiversity Information Facility. Disponível em: https://www.gbif.org (05/2021).
Gotelli, N. J., & Colwell, R. K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4(4), 379–391. DOI: 10.1046/j.1461-0248.2001.00230.x
Grant, E. H. C., Lowe, W. H., & Fagan, W. F. 2007. Living in the branches: population dynamics and ecological processes in dendritic networks. Ecology Letters, 10(2), 165–175. DOI: 10.1111/j.1461-0248.2006.01007.x
Gubiani, É. A., Ruaro, R., Ribeiro, V. R., Eichelberger, A. C. A., Bogoni, R. F., Lira, A. D., Cavalli, D., Piana, P. A., & da Graça, W. J. 2018. Non-native fish species in Neotropical freshwaters: how did they arrive, and where did they come from? Hydrobiologia, 817(1), 57–69. DOI: 10.1007/s10750-018-3617-9
Hardin, G. 1960. The Competitive Exclusion Principle. Science, 131(3409), 1292–1297. DOI: 10.1126/science.131.3409.1292
Harrison, S., & Cornell, H. 2008. Toward a better understanding of the regional causes of local community richness. Ecology Letters, 11(9), 969–979. DOI: 10.1111/j.1461-0248.2008.01210.x
Harrison, S., & Noss, R. 2017. Endemism hotspots are linked to stable climatic refugia. Annals of Botany, 119(2), 207–214. DOI: 10.1093/aob/mcw248
Hawkins, B. A., Field, R., Cornell, H. V., Currie, D. J., Guégan, J.-F., Kaufman, D. M., Kerr, J. T., Mittelbach, G. G., Oberdorff, T., O’Brien, E. M., Porter, E. E., & Turner, J. R. G. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84(12), 3105–3117. DOI: 10.1890/03-8006
Hawkins, B. A., McCain, C. M., Davies, T. J., Buckley, L. B., Anacker, B. L., Cornell, H. V., Damschen, E. I., Grytnes, J.-A., Harrison, S., Holt, R. D., Kraft, N. J. B., & Stephens, P. R. 2012. Different evolutionary histories underlie congruent species richness gradients of birds and mammals. Journal of Biogeography, 39(5), 825–841. DOI: 10.1111/j.1365-2699.2011.02655.x
Heino, J., Melo, A. S., Siqueira, T., Soininen, J., Valanko, S., & Bini, L. M. 2014. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology, 60(5), 845–869. DOI: 10.1111/fwb.12533
Hitt, N. P., & Angermeier, P. L. 2008. Evidence for fish dispersal from spatial analysis of stream network topology. Journal of the North American Benthological Society, 27(2), 304–320. DOI: 10.1899/07-096.1
Hitt, N. P., & Roberts, J. H. 2012. Hierarchical spatial structure of stream fish colonization and extinction. Oikos, 121(1), 127–137. DOI: 10.1111/j.1600-0706.2011.19482.x
Hubbell, S. 2001. The Unified Neutral Theory of Biodiversity and Biogeography.Princeton Univ Pr.
Hugueny, B., Oberdorff, T., & Tedesco, P. A. 2010. Community ecology of river fishes: a large-scale perspective. In: Community ecology of stream fishes: concepts, approaches, and techniques. pp. 29–62. Bethesda, Maryland, USA: (ed. Gido, K.B. & Jackson D.A.). American Fisheries Society.
Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415–427.
ICMBio. 2021. Portal da biodiversidade. Disponível em: https://portaldabiodiversidade.icmbio.gov.br (05/2021).
Jackson, D. A., Peres-Neto, P. R., & Olden, J. D. 2001. What controls who is where in freshwater fish communities the roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences, 58(1), 157–170.
Jézéquel, C., Tedesco, P. A., Bigorne, R., Maldonado-Ocampo, J. A., Ortega, H., Hidalgo, M., Martens, K., Torrente-Vilara, G., Zuanon, J., Acosta, A., Agudelo, E., Barrera Maure, S., Bastos, D. A., Bogotá Gregory, J., Cabeceira, F. G., Canto, A. L. C., Carvajal-Vallejos, F. M., Carvalho, L. N., Cella-Ribeiro, A., Covain, R., Donascimiento, C., Dória, C. R. C., Duarte, C., Ferreira, E. J. G., Galuch, A. V., Giarrizzo, T., Leitão, R. P., Lundberg, J. G., Maldonado, M., Mojica, J. I., Montag, L. F. A., Ohara, W. M., Pires, T. H. S., Pouilly, M., Prada-Pedreros, S., de Queiroz, L. J., Rapp Py-Daniel, L., Ribeiro, F. R. V., Ríos Herrera, R., Sarmiento, J., Sousa, L. M., Stegmann, L. F., Valdiviezo-Rivera, J., Villa, F., Yunoki, T., & Oberdorff, T. 2020. A database of freshwater fish species of the Amazon Basin. Scientific Data, 7(1). DOI: 10.1038/s41597-020-0436-4
Kent, M. 2005. Biogeography and macroecology. Progress in Physical Geography: Earth and Environment, 29(2), 256–264. DOI: 10.1191/0309133305pp447pr
Lampert, V. R., Dala-Corte, R. B., Schultz Artioli, L. G., & Bernhardt Fialho, C. 2018. Do riffle and pool fish assemblages respond differently to longitudinal position along a subtropical stream network? Fundamental and Applied Limnology, 192(2), 115–128. DOI: 10.1127/fal/2018/1186
Landeiro, V. L., Magnusson, W. E., Melo, A. S., Espírito-Santo, H. M. V., & Bini, L. M. 2011. Spatial eigenfunction analyses in stream networks: do watercourse and overland distances produce different results? Freshwater Biology, 56(6), 1184–1192. DOI: 10.1111/j.1365-2427.2010.02563.x
Legendre, P., & Legendre, L. 2012. Numerical Ecology. 3 edition 3 edition ed. Amsterdam: Elsevier.
Lehner, B., & Grill, G. 2013. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrological Processes, 27(15), 2171–2186. DOI: 10.1002/hyp.9740
Leibold, M. A., & Chase, J. M. 2018. Metacommunity ecology. Vol. 59 2ed ed.Princeton University Press: p. 504.
Leroy, B., Dias, M. S., Giraud, E., Hugueny, B., Jézéquel, C., Leprieur, F., Oberdorff, T., & Tedesco, P. A. 2019. Global biogeographical regions of freshwater fish species. Journal of Biogeography, 46(11), 2407–2419. DOI: 10.1111/jbi.13674
Levin, S. A. 1992. The Problem of pattern and scale in ecology: the Robert H. MacArthur Award Lecture. Ecology, 73(6), 1943. DOI: 10.2307/1941447
MacArthur, R. H., & Levins, R. 1967. The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101(921), 377–385. DOI: 10.1086/282505
Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J., & McGill, B. 2015. Rapid biotic homogenization of marine fish assemblages. Nature Communications, 6, 8405. DOI: 10.1038/ncomms9405
Magurran, A. E., Dornelas, M., Moyes, F., & Henderson, P. A. 2019. Temporal β diversity—A macroecological perspective. Global Ecology and Biogeography, 28(12), 1949–1960. DOI: 10.1111/geb.13026
Mantovano, T., Diniz, L. P., de Oliveira da Conceição, E., Rosa, J., Bonecker, C. C., Bailly, D., Ferreira, J. H. D., Rangel, T. F., & Lansac-Tôha, F. A. 2021. Ecological niche models predict the potential distribution of the exotic rotifer Kellicottia bostoniensis (Rousselet, 1908) across the globe. Hydrobiologia, 848(2), 299–309. DOI: 10.1007/s10750-020-04435-3
Mari, L., Casagrandi, R., Bertuzzo, E., Rinaldo, A., & Gatto, M. 2014. Metapopulation persistence and species spread in river networks. Ecology Letters, 17(4), 426–434. DOI: 10.1111/ele.12242
Maurer, B. A. 1999. Untangling ecological complexity: the macroscopic perspective.University of Chicago Press.
Maurer, B. A., & McGill, B. J. 2004. Neutral and non-neutral macroecology. Basic and Applied Ecology, 5(5), 413–422. DOI: 10.1016/j.baae.2004.08.006
McGill, B. J. 2019. The what, how and why of doing macroecology. Global Ecology and Biogeography, 28(1), 6–17. DOI: 10.1111/geb.12855
Mittelbach, G. G., Schemske, D. W., Cornell, H. V., Allen, A. P., Brown, J. M., Bush, M. B., Harrison, S. P., Hurlbert, A. H., Knowlton, N., Lessios, H. A., McCain, C. M., McCune, A. R., McDade, L. A., McPeek, M. A., Near, T. J., Price, T. D., Ricklefs, R. E., Roy, K., Sax, D. F., Schluter, D., Sobel, J. M., & Turelli, M. 2007. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters, 10(4), 315–331. DOI: 10.1111/j.1461-0248.2007.01020.x
Muneepeerakul, R., Bertuzzo, E., Lynch, H. J., Fagan, W. F., Rinaldo, A., & Rodriguez-Iturbe, I. 2008. Neutral metacommunity models predict fish diversity patterns in Mississippi–Missouri basin. Nature, 453(7192), 220–222. DOI: 10.1038/nature06813
Nekola, J. C., & White, P. S. 1999. The distance decay of similarity in biogeography and ecology. Journal of Biogeography, 26(4), 867–878.
Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., Börger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., Echeverria-Londoño, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., Ingram, D. J., Itescu, Y., Kattge, J., Kemp, V., Kirkpatrick, L., Kleyer, M., Correia, D. L. P., Martin, C. D., Meiri, S., Novosolov, M., Pan, Y., Phillips, H. R. P., Purves, D. W., Robinson, A., Simpson, J., Tuck, S. L., Weiher, E., White, H. J., Ewers, R. M., Mace, G. M., Scharlemann, J. P. W., & Purvis, A. 2015. Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45–50. DOI: 10.1038/nature14324
Oberdorff, T., Dias, M. S., Jézéquel, C., Albert, J. S., Arantes, C. C., Bigorne, R., Carvajal-Valleros, F. M., Wever, A. D., Frederico, R. G., Hidalgo, M., Hugueny, B., Leprieur, F., Maldonado, M., Maldonado-Ocampo, J., Martens, K., Ortega, H., Sarmiento, J., Tedesco, P. A., Torrente-Vilara, G., Winemiller, K. O., & Zuanon, J. 2019. Unexpected fish diversity gradients in the Amazon basin. Science Advances, 5(9), eaav8681. DOI: 10.1126/sciadv.aav8681
Oberdorff, Thierry, Tedesco, P. A., Hugueny, B., Leprieur, F., Beauchard, O., Brosse, S., & Dürr, H. H. 2011. Global and regional patterns in riverine fish species richness: a review. International Journal of Ecology, 2011, 967631. DOI: 10.1155/2011/967631
Oliveira, A. G. de, Bailly, D., Cassemiro, F. A. S., Couto, E. V. do, Bond, N., Gilligan, D., Rangel, T. F., Agostinho, A. A., & Kennard, M. J. 2019. Coupling environment and physiology to predict effects of climate change on the taxonomic and functional diversity of fish assemblages in the Murray-Darling Basin, Australia. PLOS ONE, 14(11), e0225128. DOI: 10.1371/journal.pone.0225128
Paine, R. T. 1966. Food Web Complexity and Species Diversity. The American Naturalist, 100(910), 65–75.
Radinger, J., & Wolter, C. 2014. Patterns and predictors of fish dispersal in rivers. Fish and Fisheries, 15(3), 456–473. DOI: 10.1111/faf.12028
Rahel, F. J. 2007. Biogeographic barriers, connectivity and homogenization of freshwater faunas: it’s a small world after all. Freshwater Biology, 52(4), 696–710. DOI: 10.1111/j.1365-2427.2006.01708.x
Rangel, T. F., Edwards, N. R., Holden, P. B., Diniz-Filho, J. A. F., Gosling, W. D., Coelho, M. T. P., Cassemiro, F. A. S., Rahbek, C., & Colwell, R. K. 2018. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science, 361(6399), eaar5452. DOI: 10.1126/science.aar5452
Reis, R. E., Albert, J. S., Di Dario, F., Mincarone, M. M., Petry, P., & Rocha, L. A. 2016. Fish biodiversity and conservation in South America. Journal of Fish Biology, 89(1), 12–47. DOI: 10.1111/jfb.13016
Reis, R. E., Kullander, S. O., & Ferraris, C. J. 2003. Check-list of Freshwater Fishes of South and Central Americ.EDIPUCS.
Ricklefs, R. E. 1987. Community diversity: relative roles of local and regional processes. Science, 235(4785), 167–171. DOI: 10.1126/science.235.4785.167
Ricklefs, R. E. 2004. A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7(1), 1–15. DOI: 10.1046/j.1461-0248.2003.00554.x
Rinaldo, A., Rigon, R., Banavar, J. R., Maritan, A., & Rodriguez-Iturbe, I. 2014. Evolution and selection of river networks: Statics, dynamics, and complexity. Proceedings of the National Academy of Sciences, 201322700. DOI: 10.1073/pnas.1322700111
Rodrigues-Filho, C. A. S., Leitão, R. P., Zuanon, J., Sánchez‐Botero, J. I., & Baccaro, F. B. 2018. Historical stability promoted higher functional specialization and originality in Neotropical stream fish assemblages. Journal of Biogeography, 45(6), 1345–1354. DOI: 10.1111/jbi.13205
Roxo, F. F., Lujan, N. K., Tagliacollo, V. A., Waltz, B. T., Silva, G. S. C., Oliveira, C., & Albert, J. S. 2017. Shift from slow- to fast-water habitats accelerates lineage and phenotype evolution in a clade of Neotropical suckermouth catfishes (Loricariidae: Hypoptopomatinae). PLOS ONE, 12(6), e0178240. DOI: 10.1371/journal.pone.0178240
Ruaro, R., Conceição, E. O., Silva, J. C., Cafofo, E. G., Angulo-Valencia, M. A., Mantovano, T., Pineda, A., Paula, A. C. M. de, Zanco, B. F., Capparros, E. M., Moresco, G. A., Oliveira, I. J. de, Antiqueira, J. L., Ernandes-Silva, J., Silva, J. V. F. da, Adelino, J. R. P., Santos, J. A. dos, Ganassin, M. J. M., Iquematsu, M. S., Landgraf, G. O., Lemes, P., Cassemiro, F. A. S., Batista-Silva, V. F., Diniz-Filho, J. A. F., Rangel, T. F., Agostinho, A. A., & Bailly, D. 2019. Climate change will decrease the range of a keystone fish species in La Plata River Basin, South America. Hydrobiologia, 836(1), 1–19. DOI: 10.1007/s10750-019-3904-0
Soares, B. E., & Nakamura, G. 2021. Ecologia filogenética de assembleias de peixes de riachos Neotropicais. Oecologia Australis, 25 (02), 434–449. DOI: 10.4257/oeco.2021.2502.13
speciesLink. 2021. speciesLink portal. Disponível em: http://www.splink.cria.org.br (05/2021).
Tedesco, P. A., Beauchard, O., Bigorne, R., Blanchet, S., Buisson, L., Conti, L., Cornu, J.-F., Dias, M. S., Grenouillet, G., Hugueny, B., Jézéquel, C., Leprieur, F., Brosse, S., & Oberdorff, T. 2017a. A global database on freshwater fish species occurrence in drainage basins. Version 1. Scientific Data, 4(1), 1–6. DOI: 10.1038/sdata.2017.141
Tedesco, P. A., Oberdorff, T., Cornu, J.-F., Beauchard, O., Brosse, S., Dürr, H. H., Grenouillet, G., Leprieur, F., Tisseuil, C., Zaiss, R., & Hugueny, B. 2013. A scenario for impacts of water availability loss due to climate change on riverine fish extinction rates. Journal of Applied Ecology, 50, 1105–1115. DOI: 10.1111/1365-2664.12125
Tedesco, P. A., Oberdorff, T., Lasso, C. A., Zapata, M., & Hugueny, B. 2005. Evidence of history in explaining diversity patterns in tropical riverine fish. Journal of Biogeography, 32(11), 1899–1907. DOI: 10.1111/j.1365-2699.2005.01345.x
Tedesco, P. A., Paradis, E., Lévêque, C., & Hugueny, B. 2017b. Explaining global-scale diversification patterns in actinopterygian fishes. Journal of Biogeography, 44(4), 773–783. DOI: 10.1111/jbi.12905
Teresa, F. B., Rodrigues-Filho, C. A. S., & Leitão, R. P. 2021. Diversidade funcional de comunidades de peixes de riachos. Oecologia Australis, 25 (02), 416–433. DOI: 10.4257/oeco.2021.2502.12
Thomaz, A. T., Christie, M. R., & Knowles, L. L. 2016. The architecture of river networks can drive the evolutionary dynamics of aquatic populations. Evolution, 70(3), 731–739. DOI: 10.1111/evo.12883
Thomaz, S. M., Bini, L. M., & Bozelli, R. L. 2006. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia, 579(1), 1–13. DOI: 10.1007/s10750-006-0285-y
Thorp, J. H. 2014. Metamorphosis in river ecology: from reaches to macrosystems. Freshwater Biology, 59(1), 200–210. DOI: 10.1111/fwb.12237
Tonkin, J. D., Altermatt, F., Finn, D. S., Heino, J., Olden, J. D., Pauls, S. U., & Lytle, D. A. 2018. The role of dispersal in river network metacommunities: Patterns, processes, and pathways. Freshwater Biology, 63(1), 141–163. DOI: 10.1111/fwb.13037
Vieira, T. B., Pavanelli, C. S., Casatti, L., Smith, W. S., Benedito, E., Mazzoni, R., Sánchez-Botero, J. I., Garcez, D. S., Lima, S. M. Q., Pompeu, P. S., Agostinho, C. S., Montag, L. F. de A., Zuanon, J., Aquino, P. D. P. U. de, Cetra, M., Tejerina-Garro, F. L., Duboc, L. F., Corrêa, R. C., Pérez-Mayorga, M. A., Brejão, G. L., Mateussi, N. T. B., Castro, M. A. de, Leitão, R. P., Mendonça, F. P. de, Silva, L. R. P. da, Frederico, R., & De Marco, P. 2018. A multiple hypothesis approach to explain species richness patterns in neotropical stream-dweller fish communities. PLOS ONE, 13(9), e0204114. DOI: 10.1371/journal.pone.0204114
Wiens, J. J., & Graham, C. H. 2005. Niche Conservatism: Integrating Evolution, Ecology, and Conservation Biology. Annual Review of Ecology, Evolution, and Systematics, 36(1), 519–539. DOI: 10.1146/annurev.ecolsys.36.102803.095431
Willig, M. R., Kaufman, D. M., & Stevens, R. D. 2003. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics, 34(1), 273–309. DOI: 10.1146/annurev.ecolsys.34.012103.144032
Wright, D. H. 1983. Species-energy theory: an extension of species-area theory. Oikos, 41(3), 496–506. DOI: 10.2307/3544109
Yeakel, J. D., Moore, J. W., Guimarães, P. R., & Aguiar, M. a M. de. 2014. Synchronisation and stability in river metapopulation networks. Ecology Letters, 17(3), 273–283. DOI: 10.1111/ele.12228