Propriedades Físicas e Elétricas de Tempestades na Região Sudeste do Brasil
DOI:
https://doi.org/10.11137/1982-3908_2021_44_41700Keywords:
Relâmpagos, ForTraCC, SatéliteAbstract
A Região Sudeste do Brasil anualmente é afetada por alta incidência de relâmpagos produzida por nuvens de tempestades. Além de concentrar um grande contingente populacional, a região sudeste também possui grandes centros industriais, distribuição e comercialização de energia elétrica e de telecomunicações. No entanto, estudos sobre a evolução de relâmpagos intra-nuvem (IN) e nuvem-solo (NS) ao longo do ciclo de vida de tempestades através de uma longa base de dados ainda é ausente para essa região. Dessa maneira, esse presente estudo tem como objetivo avaliar as relações entre as propriedades físicas dos Sistemas Convectivos de Mesoescala (SCM) e as propriedades dos relâmpagos IN, nuvem-solo positivo (+NS) e nuvem-solo negativo (-NS) da Região Sudeste. Nesse contexto foram utilizadas imagens do canal infravermelho (10,7 µm) do satélite geoestacionário Geostationary Operational Environmental Satellite-13 (GOES-13) e dados de relâmpagos da Earth Networks Total Lightning Network (ENTLN) compreendendo os anos de 2013 a 2017. As tempestades foram identificadas e rastreadas através do processamento do algoritmo Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC). Foram identificados e avaliados 3578 SCM na região de estudo durante o período supracitado. Os SCM sem relâmpagos mostraram-se menos duradouros (em horas), menores (em km) e com maiores valores de temperatura de brilho (TB) do topo das nuvens. SCM com relâmpagos duram 42 minutos a mais em relação àqueles que não possuem relâmpagos. O número total de relâmpagos (relâmpagos por SCM) tende a crescer em relação à área das tempestades, porém a densidade de relâmpagos (eventos por km2) é maior em SCM menores. Para ambos os tipos de relâmpagos, uma diminuição na TB representou um aumento na quantidade de relâmpagos. Em termos de ciclo de vida, o máximo de relâmpagos IN, -NS e +NS ocorrem na iniciação, estágio entre a iniciação e maturação e estágio entre a maturação e dissipação, respectivamente. Portanto, as tempestades eletrificadas se diferem em aspectos físicos e dinâmicos em relação àquelas que não possuem relâmpagos. Estes resultados são importantes para auxiliar a previsão de curtíssimo prazo de tempo (nowcasting).
References
Amorati, R., Alberoni, P.P., Levizzani, V. & Nanni, S. 2000, ‘IR based satellite and radar rainfall estimates of convective storms over northern Italy’, Meteorological Applications: A journal of Forecasting, Practical Applications, Training Techniques and Modelling, vol. 7, no. 1, pp. 1-18. https://doi.org/10.1017/S1350482700001328
Ballarotti, M.G. 2005, ‘Estudo de Relâmpagos Nuvem-Solo Através de Câmera Rápida’, Master Dissertation, Instituto Nacional de Pesquisas Espaciais.
Cardoso, I., Pinto Jr, O., Pinto, I.R.C.A. & Holle, R. 2014, ‘Lightning casualty demographics in Brazil and their implications for safety rules’, Atmospheric Research, vol. 135, pp. 374-79. https://doi.org/10.1016/j.atmosres.2012.12.006
Church, C. 1966, ‘The electrification of hail’, PhD Thesis, Durham University.
Durkee, J.D. & Mote, T.L. 2009, ‘A climatology of warm-season Mesoscale Convective Complexes in subtropical South America’, International Journal of Climatology, vol. 30, pp. 418-31. https://doi.org/10.1002/joc.1893
Fernandes, W.A. 2005, ‘Características dos Relâmpagos Gerados por Nuvens de Tempestades em Ambientes sob a Influência das Queimadas em Rondônia’, PhD Thesis, Instituto Nacional de Pesquisas Espaciais.
Gaskell, W.Q.J.R. & Illingworth, A.J. 1980, ‘Charge transfer accompanying individual collisions between ice particles and its role in thunderstorm electrification’, Quarterly Journal of the Royal Meteorological Society, vol. 106, no. 450, pp. 841-54. https://doi.org/10.1002/qj.49710645013
Goodman, S J. & MacGorman, D.R. 1986, ‘Cloud-to-ground lightning activity in Mesoscale Convective Complexes’, Monthly Weather Review, vol. 114, no. 12, pp. 2320-28. https://doi.org/10.1175/1520-0493(1986)114<2320:CTGLAI>2.0.CO;2
Goodman, S.J., Buechler, D.E. & Meyer, P.J. 1988, ‘Convective tendency images derived from a combination of lightning and satellite data’, Weather and forecasting, vol. 3, no. 3, pp. 173-88. https://doi.org/10.1175/1520-0434(1988)003<0173:CTIDFA>2.0.CO;2
Hahn, R. 2021, ‘Estimativa da ocorrência e severidade de granizo no Rio Grande do Sul baseado em observações de radar meteorológico’, Master Dissertation, Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo.
Houze Jr, R.A. 1973, ‘A climatological study of vertical transports by cumulus-scale convection’, Journal of Atmospheric Sciences, vol. 30, no. 6, pp. 1112-23. https://doi.org/10.1175/1520-0469(1973)030<1112:ACSOVT>2.0.CO;2
Laing, A.G., Fritsch, J.M. & Negri, A.J. 1999, ‘Contribution of mesoscale convective complexes to rainfall in Sahelian Africa: Estimates from geostationary infrared and passive microwave data’, Journal of Applied Meteorology, vol. 38, no. 7, pp. 957-64. https://doi.org/10.1175/1520-0450(1999)038<0957:COMCCT>2.0.CO;2
Lang, T.J., Miller, L.J., Weisman, M., Rutledge, S.A., Barker III, L.J., Bringi, V.N., Chandrasekar, V., Detwiler, A., Dowsken, N., Helsdon, J., Knight, C., Krehbiel, P., Lyons, W.A., MacGorman, D., Rasmussen, E., Rison, W., Rust, W.D. & Thomas R.J. 2004, ‘The severe thunderstorm electrification and precipitation study’, Bulletin of the American Meteorological Society, vol. 85, no. 8, pp. 1107-26. https://doi.org/10.1175/BAMS-85-8-1107
Liu, C. & Heckman, S. 2011, ‘The application of total lightning detection and cell tracking for severe weather prediction’, 91st American Meteorological Society Annual Meeting, Seattle, pp. 1-10.
Macedo, S.R., Lima, W.F. A., Machado, L.A.T., & Pinto Jr, O. 2005, ‘Monitoramento e evolução de descargas elétricas atmosféricas associadas a sistemas convectivos de mesoescala’. Boletim da Sociedade Brasileira de Meteorologia, vol. 29, no. 3, pp. 67-71.
MacGorman, D.R. & Rust, W.D. 1998, The electrical nature of storms, Oxford University Press, New York.
Machado, L.A.T., Rossow, W.B., Guedes, R.L. & Walker, A.W. 1998, ‘Life cycle variations of Mesoscale Convective Systems over the Americas’, Monthly Weather Review, vol. 126, no. 6, pp. 1630-54. https://doi.org/10.1175/1520-0493(1998)126<1630:LCVOMC>2.0.CO;2
Machado, L.A.T. & Laurent, H. 2004, ‘The convective system area expansion over Amazonia and its relationships with convective system life duration and high-level wind divergence’, Monthly Weather Review, vol. 132, no. 3, pp. 714-25. https://doi.org/10.1175/1520-0493(2004)132<0714:TCSAEO>2.0.CO;2
Machado, L.A., Lima, W.F., Pinto Jr, O. & Morales, C.A. 2009, ‘Relationship between cloud-to-ground discharge and penetrative clouds: A multi-channel satellite application’, Atmospheric Research, vol. 93, no. 1-3, pp. 304-9. https://doi.org/10.1016/j.atmosres.2008.10.003
Machado, L.A.T., Silva Dias, M.A.F., Morales, C., Fisch, G., Vila, D., Albrecht, R., Goodman, S.J., Calheiros, A.J.P., Biscaro, T., Kummerow, C., Cohen, J., Fitzjarrald, D., Nascimento, E.L., Sakamoto, M.S., Cunningham, C., Chaboureau, J., Petersen, W.A., Adams, D.K., Baldini, L., Angelis, C.F., Sapucci, L.F., Salio, P., Barbosa, H.M.J., Landulfo, E., Souza, R.A.F., Blakeslee, R.J., Bailey, J., Freitas, S., Lima, W.F.A. & Tokay, A. 2014, ‘The CHUVA project: How does convection vary across Brazil?’, Bulletin of the American Meteorological Society, vol. 95, no. 9, pp. 1365-80. https://doi.org/10.1175/BAMS-D-13-00084.1
Maddox, R.A. 1980, ‘Mesoscale convective complexes’, Bulletin of the American Meteorological Society, vol. 61, no. 11, pp. 1374-87. https://doi.org/10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2
Marengo, J. A., Douglas, M.W. & Dias, P.L.S. 2002, ‘The South American low‐level jet east of the Andes during the 1999 LBA‐TRMM and LBA‐WET AMC campaign’, Journal of Geophysical Research: Atmospheres, vol. 107, no. D20, pp. LBA-47. https://doi.org/10.1029/2001JD001188
Marengo, J.A., Soares, W.R., Saulo, C. & Nicolini, M. 2004, ‘Climatology of the low level Jet east of the Andes as derived from the NCEP–NCAR reanalyzes: characteristics and temporal variability’, Journal of Climate, vol. 17, no. 12, pp. 2261-80. https://doi.org/10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO;2
Martins, J.A., Brand, V.S., Capucim, M.N., Felix, R.R., Martins, L.D., Freitas, E.D., Gonçalves, F.L.T, Hallak, R, Silva Dias, M.A.F & Cecil, D.J. 2017, ‘Climatology of destructive hailstorms in Brazil’, Atmospheric Research, vol. 184, pp. 126-38. https://doi.org/10.1016/j.atmosres.2016.10.012
Matthee, R. & Mecikalski, J.R. 2013, ‘Geostationary infrared methods for detecting lightning producing cumulonimbus clouds’, Journal of Geophysical Research: Atmospheres, vol. 118, no. 12, pp. 6580-92. https://doi.org/10.1002/jgrd.50485
Mattos, E.V. & Machado, L.A. 2011, ‘Cloud-to-ground lightning and Mesoscale Convective Systems’, Atmospheric Research, vol. 99, no. 3-4, pp. 377-90. https://doi.org/10.1016/j.atmosres.2010.11.007
Mattos, E.V., Machado, L.A., Williams, E.R. & Albrecht, R.I. 2016, ‘Polarimetric radar characteristics of storms with and without lightning activity’, Journal of Geophysical Research: Atmospheres, vol. 121, no. 23, pp. 201-14. https://doi.org/10.1002/2016JD025142
Mecikalski, J.R., Li, X., Carey, L.D., McCaul Jr, E.W. & Coleman, T.A. 2013, ‘Regional comparison of GOES cloud-top properties and radar characteristics in advance of first-flash lightning initiation’, Monthly Weather Review, vol. 141, no. 1, pp. 55-74. https://doi.org/10.1175/MWR-D-12-00120.1
Mecikalski, R.M. & Carey, L.D. 2018, ‘Radar reflectivity and altitude distributions of lightning as a function of IC, CG, and HY flashes: Implications for LNOx production’, Journal of Geophysical Research: Atmospheres, vol. 123, no. 22, pp. 12-796. https://doi.org/10.1029/2018JD029263
Naccarato, K.P. 2001, ‘Estudo de relâmpagos no Brasil com base na análise de desempenho do sistema de localização de tempestades’, Master Dissertation, Instituto Nacional de Pesquisas Espaciais.
Nesbitt, S.W., Salio, P.V., Ávila, E., Bitzer, P., Carey, L., Chandrasekar, V., Deierling, W., Dominguez, F., Dillon, M.E., Garcia, C.M., Gochis, D., Goodman, S., Hence, D.A., Kosiba, K.A., Kumjian, M.R., Lang, T., Luna, L.M., Marquis, J., Marshall, R., McMurdie, L.A., Nascimento, E.L., Rasmussen, K.L., Roberts, R., Rowe, A.K., Ruiz, J. J., São Sabbas, E.F., Saulo, A.C., Schumacher, R.S., Skabar, Y.G., Machado, L.A.T., Trapp, R.J., Varble, A., Wilson, J., Wurman, J., Zipser, E.J., Arias, I., Bechis, H. & Grover, M.A. 2021, ‘A storm safari in Subtropical South America: proyecto RELAMPAGO’. Bulletin of the American Meteorological Society, vol. 102, no. 6, pp. 1-64. https://doi.org/10.1175/BAMS-D-20-0029.1
Observing Systems Capability Analysis and Review Toll 2020, viewed 12 September 2020, < https://www.wmo-sat.info/oscar/satellites/view/149>.
OSCAR - see Observing Systems Capability Analysis and Review Toll.
Peterson, M., Rudlosky, S. & Zhang, D. 2020, ‘Changes to the appearance of optical lightning flashes observed from space according to thunderstorm organization and structure’, Journal of Geophysical Research: Atmospheres, vol. 125, no. 4, pp. e2019JD031087. https://doi.org/10.1029/2019JD031087
Pinto Jr, O., Gin, R.B.B., Pinto, I.R.C.A., Mendes Jr, O., Diniz, J.H. & Carvalho, A.M. 1996, ‘Cloud to ground lightning flash characteristics in southeastern Brazil for the 1992–1993 summer season’, Journal of Geophysical Research: Atmospheres, vol. 101, no. D23, pp. 29627-35. https://doi.org/10.1029/96JD01865
Prentice, S. A. & Mackerras, D. 1977, ‘The ratio of cloud to cloud-ground lightning flashes in thunderstorms’, Journal of Applied Meteorology and Climatology, vol. 16, no. 5, pp. 545-50. https://doi.org/10.1175/1520-0450(1977)016<0545:TROCTC>2.0.CO;2
Reynolds, S.E., Brook, M. & Gourley, M.F. 1957, ‘Thunderstorm charge separation’, Journal of Atmospheric Sciences, vol. 14, no. 5, pp. 426-36. https://doi.org/10.1175/1520-0469(1957)014<0426:TCS>2.0.CO;2
Rycroft, M.J., Israelsson, S. & Price, C. 2000, ‘The global atmospheric electric circuit, solar activity and climate change’, Journal of Atmospheric and Solar-Terrestrial Physics, vol. 62, no. 17-18, pp. 1563-76. https://doi.org/10.1016/S1364-6826(00)00112-7
Salio, P., Nicolini, M. & Zipser, E.J. 2007, ‘Mesoscale Convective Systems over southeastern South America and their relationship with the South American low-level jet’, Monthly Weather Review, vol. 135, no. 4, pp. 1290-309. https://doi.org/10.1175/MWR3305.1
Sakamoto, M.S. 2009, ‘Sistemas Convectivos de Mesoescala Observados na Região Subtropical da América do Sul durante o SALLJEX’, Master Dissertation, Universidade de São Paulo.
Saunders, C.P.R. 1993, ‘A review of thunderstorm electrification processes’, Journal of Applied Meteorology and Climatology, vol. 32, no. 4, pp. 642-55. https://doi.org/10.1175/1520-0450(1993)032<0642:AROTEP>2.0.CO;2
Sperling, V.B. 2018, ‘Processos Físicos e Elétricos das Tempestades de Granizo na Região Sul do Brasil’. PhD Thesis, Instituto Nacional de Pesquisas Espaciais.
Takahashi, T. 1984, ‘Thunderstorm electrification-A numerical study’, Journal of the Atmospheric Sciences, vol. 41, no. 17, pp. 2541-58. https://doi.org/10.1175/1520-0469(1984)041<2541:TENS>2.0.CO;2
Uman, M.A. & Krider, E.P. 1989, ‘Natural and artificially initiated lightning’, Science, vol. 246, no. 4929, pp. 457-64. https://doi.org/10.1126/science.246.4929.457
Velasco, I. & Fritsch, J.M. 1987, ‘Mesoscale convective complexes in the Americas’, Journal of Geophysical Research: Atmospheres, vol. 92, no. D8, pp. 9591-613. https://doi.org/10.1029/JD092iD08p09591
Vila, D.A., Machado, L.A.T., Laurent, H. & Velasco, I., 2008, ‘Forecast and tracking the evolution of cloud clusters (ForTracCC) using satellite infrared imagery: methodology and validation’, Weather Forecasting, vol. 23, no. 2, pp. 233-45. https://doi.org/10.1175/2007WAF2006121.1
Wallace, J.M. & Hobbs, P.V. 2006, Atmospheric science: an introductory survey, Elsevier Academic Press, Boston, Massachusetts.
Williams, E.R. 1989, ‘The tripole structure of thunderstorms’, Journal of Geophysical Research: Atmospheres, vol. 94, no. D11, pp. 13151-67. https://doi.org/10.1029/JD094iD11p13151
Zipser, E.J., Cecil, D.J., Liu, C., Nesbitt, S.W. & Yorty, D.P. 2006, ‘Where are the most intense thunderstorms on Earth?’, Bulletin of the American Meteorological Society, vol. 87, no. 8, pp. 1057-72. https://doi.org/10.1175/BAMS-87-8-1057
Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2021 Anuário do Instituto de Geociências
This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.