Climatologia do Índice do Potencial de Gênese de Ciclones Tropicais nos Oceanos Adjacentes à América do Sul
DOI:
https://doi.org/10.11137/1982-3908_2021_44_39515Keywords:
Índice do Potencial de Gênese, Ciclone Tropical, ClimatologiaAbstract
Os oceanos tropicais/subtropicais adjacentes à América do Sul não são climatologicamente propícios à formação de ciclones tropicais de acordo com a literatura. Entretanto, desde 2004 já foram registrados dois ciclones tropicais no oceano Atlântico sudoeste e um subtropical que teve potencial para se tornar tropical. Locais propícios à gênese de ciclones tropicais podem ser identificados através do índice do potencial de gênese, que é uma metodologia desenvolvida pelo Dr. Kerry Emanuel e colaboradores. Diante disso, o objetivo do estudo é contribuir com o conhecimento climatológico de regiões propícias à gênese de ciclones tropicais nas cercanias da América do Sul usando o índice do potencial de gênese, bem como de outras variáveis atmosféricas e oceânicas importantes para a ciclogênese. Para tanto, são utilizados dados do período de 1989 a 2019 da reanálise ERA5, que é considerada estado-da-arte em termos de reanálise. Os resultados apresentam a climatologia do índice do potencial de gênese bem como dos componentes desse índice e de outras variáveis atmosféricas e oceânicas que são importantes para o desenvolvimento de sistemas tropicais. O principal resultado obtido no estudo é a presença de potencial para a gênese de sistemas tropicais no oceano Atlântico ao longo da costa brasileira. Em outubro, surge um sinal fraco entre a costa da Bahia e Espírito Santo. Esse sinal se intensifica atingindo máxima intensidade entre fevereiro e março, quando também alcança a costa sul do Brasil. Portanto, a utilização de uma metodologia robusta aplicada em dados estado-da-arte desmistifica a hipótese da não existência de potencial para a gênese de ciclones tropicais na costa do Brasil.
References
Aceituno, P. 1980. Relation entre la posicion del anticiclon subtropical y la precipitación en Chile. Relatório do Projeto no E. 551.791 do Departamento de Geofísica da Universidade do Chile.
Arya, S.P. 1988. Introduction to micrometeorology. International Geophysics Series, 42: 307.
Barrett, B. & Hameed, S. 2017. Seasonal Variability in Precipitation in Central and Southern Chile: Modulation by the South Pacific High. Journal of Climate, 30: 55-69. DOI: https://doi.org/10.1175/JCLI-D-16-0019.1
Bastos, C.C. & Ferreira, N.J. 2000. Análise climatológica da alta subtropical do Atlântico Sul. CEP, 12220(110): 973-990.
Berggren, R.; Gibbs, W.J. & Newton, C.W. 1958. Observational characteristics of the jet stream: A survey of the literature. Geneva, WMO Publication 71, 102 p.
Bister, M. & Emanuel, K.A. 1998. Dissipative heating and hurricane intensity. Meteorology and Atmospheric Physics, 55: 233–240. DOI: https://doi.org/10.1007/BF01030791
Bosart, L.F. & Lin, S.C. 1984. A diagnostic analysis of the Presidents' Day storm of February 1979. Monthly Weather Review, 112(11): 2148-2177. DOI: https://doi.org/10.1175/1520-0493(1984)112<2148:ADAOTP>2.0.CO;2
Camargo, S.J.; Emanuel, K.A. & Sobe, A.H. 2007. Use of a Genesis Potential Index to Diagnose ENSO Effects on Tropical Cyclone Genesis. Journal of Climate, 20: 4819- 4834. DOI: https://doi.org/10.1175/JCLI4282.1
Carvalho, L.M.; Jones, C. & Liebmann, B. 2004. The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. Journal of Climate, 17(1): 88-108. DOI: https://doi.org/10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2
Cataldi, M.; Assad, L.PD.F.; Torres Junior, A.R. & Alves, J.L.D. 2010. Estudo da influência das anomalias da TSM do Atlântico Sul extratropical na região da Confluência Brasil-Malvinas no regime hidrometeorológico de verão do Sul e Sudeste do Brasil. Revista Brasileira de Meteorologia, 25(4): 513-524. DOI: https://doi.org/10.1590/S0102-77862010000400010
Chang, S.W.; Holt, T.R. & Sashegyi, K.D. 1996. A numerical study of the ERICA IOP 4 marine cyclone. Monthly Weather Review, 124(1): 27-46. DOI: https://doi.org/10.1175/1520-0493(1996)124<0027:ANSOTE>2.0.CO;2
Copernicus Climate Change Service (C3S). 2017. ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS). Disponível em: <https://cds.climate.copernicus.eu/cdsapp#!/home>. Acesso em 10 out. 2020.
da Rocha, R.P.; Reboita, M.S.; Gozzo, L.F.; Dutra, L.M.M. & de Jesus, E.M. 2019. Subtropical cyclones over the oceanic basins: a review. Annals of the New York Academy of Sciences, 1436(1): 138-156. DOI: https://doi.org/10.1111/nyas.13927
de Jesus, E.M.; da Rocha, R.P.; Crespo, N.M.; Reboita, M.S. & Gozzo, L.F. 2020. Multi-model climate projections of the main cyclogenesis hot-spots and associated winds over the eastern coast of South America. Climate Dynamics, 1-21. DOI: http://dx.doi.org/10.1007/s00382-020-05490-1
DeMaria, M.; Knaff, J.A. & Connell, B.H. 2001. A tropical cyclone genesis parameter for the tropical Atlantic. Weather and Forecasting, 16(2): 219-233. DOI: https://doi.org/10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2
Dias Pinto, J.R.; Reboita, M.S. & da Rocha, R.P. 2013. Synoptic and dynamical analysis of subtropical cyclone Anita (2010) and its potential for tropical transition over the South Atlantic Ocean. Journal of Geophysical Research: Atmospheres, 118(19): 10-870. DOI: https://doi.org/10.1002/jgrd.50830
Dutra, L.M.M.; da Rocha, R.P.; Lee, R.W.; Peres, J.R.R. & de Camargo, R. 2017. Structure and evolution of subtropical cyclone Anita as evaluated by heat and vorticity budgets. Quarterly Journal of the Royal Meteorological Society, 143(704): 1539-1553. DOI: https://doi.org/10.1002/qj.3024
Emanuel, K.A. 1986. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. Journal of the Atmospheric Sciences, 43(6): 585-605. DOI: https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2
Emanuel, K.A. 1991. The theory of hurricanes. Annual Review of Fluid Mechanics, 23(1): 179-196.
Emanuel, K.A. & Nolan, D.S. 2004. Tropical cyclone activity and global climate system. In: 26th CONFERENCE ON HURRICANES AND TROPICAL METEOROLGY, Miami, 2004. Expanded abstracts, Miami, p. 240–241.
Emanuel, K. 2005. Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436(7051): 686-688. DOI: https://doi.org/10.1038/nature03906
Emanuel, K. 2018. 100 Years of Progress in Tropical Cyclone Research. Meteorological Monographs, 59(1): 15-1. DOI: https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1
Escobar, G.C.J. & Reboita, M.S. 2020. Relationship between daily atmospheric circulation patterns and South Atlantic Convergence Zone (SACZ) events. Early view. Atmósfera. DOI: https://10.20937/ATM.52936
Evans, J.L. & Braun, A. 2012. A climatology of subtropical cyclones in the South Atlantic. Journal of Climate, 25(21): 7328-7340. DOI: https://doi.org/10.1175/JCLI-D-11-00212.1
Evans, J.L. & Guishard, M.P. 2009. Atlantic subtropical storms. Part I: Diagnostic criteria and composite analysis. Monthly Weather Review, 137(7): 2065-2080. DOI: https://doi.org/10.1175/2009MWR2468.1
Ferreira, A.G. & da Silva Mello, N.G. 2005. Principais sistemas atmosféricos atuantes sobre a região Nordeste do Brasil e a influência dos oceanos Pacífico e Atlântico no clima da região. Revista Brasileira de Climatologia, 1(1): 15-28. DOI: http://dx.doi.org/10.5380/abclima.v1i1.25215
Ferreira, G.W.S.; Reboita, M.S. & da Rocha, R.P. 2019. Vórtices Ciclônicos de Altos Níveis nas Cercanias do Nordeste do Brasil: Climatologia e Análise da Vorticidade Potencial Isentrópica. Anuário do Instituto de Geociências, 42(3): 568-585. DOI: http://dx.doi.org/10.11137/2019_3_568_585
Frank, W.M. 1977. The structure and energetics of the tropical cyclone I. Storm structure. Monthly Weather Review, 105(9): 1119-1135. DOI: https://doi.org/10.1175/1520-0493(1977)105<1119:TSAEOT>2.0.CO;2
Frank, W.M. & Ritchie, E.A. 2001. Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Monthly weather review, 129(9): 2249-2269. DOI: https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2
Galvin, J.F.P. 2008. The weather and climate of the tropics: Part 7 - Tropical revolving storms. Weather, 63(11): 327-333. DOI: https://doi.org/10.1002/wea.252
Gan, M.A. & Rao, V.B. 1991. Surface cyclogenesis over South America. Monthly Weather Review, 119(5): 1293-1302. DOI: https://doi.org/10.1175/1520-0493(1991)119<1293:SCOSA>2.0.CO;2
Garbarini, E.M.; González, M.H. & Rolla, A.L. 2019. The influence of Atlantic High on seasonal rainfall in Argentina. International Journal of Climatology, 39: 4688- 4702. DOI: https://doi.org/10.1002/joc.6098
Garbarini, E.M.; González, M.H. & Rolla, A.L. 2020. Modulation of Seasonal Precipitation in Argentina by The South Pacific High. International Journal of Climatology, 41(S1): 1-3324. DOI: https://doi.org/10.1002/joc.6924
Garreaud, R.D. & Falvey, M. 2009. The coastal winds off western subtropical South America in future climate scenarios. International Journal of Climatology, 29(4): 543-554. DOI: https://doi.org/10.1002/joc.1716
Garreaud, R.D. & Rutllant, J. 2003. Coastal lows along the subtropical west coast of South America: Numerical simulation of a typical case. Monthly Weather Review, 131(5): 891-908. DOI: https://doi.org/10.1175/1520-0493(2003)131<0891:CLATSW>2.0.CO;2
Garreaud, R.D.; Rutllant, J.A. & Fuenzalida, H. 2002. Coastal lows along the subtropical west coast of South America: Mean structure and evolution. Monthly Weather Review, 130(1): 75-88. DOI:https://doi.org/10.1175/1520-0493(2002)130<0075:CLATSW>2.0.CO;2
Gozzo, L.F.; da Rocha, R.P.; Gimeno, L. & Drumond, A. 2017. Climatology and numerical case study of moisture sources associated with subtropical cyclogenesis over the southwestern Atlantic Ocean. Journal of Geophysical Research: Atmospheres, 122(11): 5636-5653. DOI: https://doi.org/10.1002/2016JD025764
Gozzo, L.F.; da Rocha, R.P.; Reboita, M.S. & Sugahara, S. 2014. Subtropical cyclones over the southwestern South Atlantic: Climatological aspects and case study. Journal of Climate, 27(22): 8543-8562. DOI: https://doi.org/10.1175/JCLI-D-14-00149.1
Gramcianinov, C.B. 2019. Changes in South Atlantic Cyclones due Climate Change. Programa de Pós-graduação em Meteorologia, Universidade de São Paulo, Tese de Doutorado, 224p.
Gramcianinov, C.B.; Campos, R.M.; de Camargo, R.; Hodges, K.I.; Soares, C.G. & Silva Dias, P.L. 2020. Analysis of Atlantic extratropical storm tracks characteristics in 41 years of ERA5 and CFSR/CFSv2 databases. Ocean Engineering, 216: 108111. DOI: https://doi.org/10.1016/j.oceaneng.2020.108111
Gray, W.M. 1968. Global View of the origin of Tropical Disturbances and Storms. Monthly Weather Review, 96(10): 669-700. DOI: https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
Grodsky, S.A. & Carton, J.A. 2003. The intertropical convergence zone in the South Atlantic and the equatorial cold tongue. Journal of Climate, 16(4): 723-733. DOI: https://doi.org/10.1175/1520-0442(2003)016<0723:TICZIT>2.0.CO;2
Guia, C. 2010. Análises das características sinóticas das trajetórias dos ciclones extratropicais que atuam na América do Sul e Vizinhanças. Programa de Pós-graduação em Meteorologia, Instituto Nacional de Pesquisas Espaciais, Tese de Doutorado, 105p.
Guishard, M.P. 2006. Atlantic subtropical storms: Climatology and characteristics. Programa de Pós-graduação em Meteorologia, Pennsylvania State University, Tese de Doutorado, 158p.
Hart, R.E. 2003. A cyclone phase space derived from thermal wind and thermal asymmetry. Monthly Weather Review, 131(4): 585-616. DOI: https://doi.org/10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2
Hastenrath, S. 2012. Climate dynamics of the tropics (Vol. 8). Dordrecht, Springer Science & Business Media, 488 p.
He, J.; Gong, S.; Liu, H.; An, X.; Yu, Y.; Zhao, S.; Wu, L.; Song, C.; Xhou, C.; Wang, J.; Yin, C. & Yu, L. 2017. Influences of meteorological conditions on interannual variations of particulate matter pollution during winter in the Beijing–Tianjin–Hebei area. Journal of Meteorological Research, 31(6): 1062-1069. DOI: https://doi.org/10.1007/s13351-017-7039-9
Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; Abdalla, S.; Abellan, X.; Balsamo, G.; Bechtold, P.; Biavati, G.; Bidlot, J.; Bonavita, M.; de Chiara, G.; Dahlgren, P.; Dee, D.; Diamantakis, M.; Dragani, R.; Flemming, J.; Forbes, R.; Fuentes, M.; Geer, A.; Haimberger, L.; Healy, S.; Hogan, R.J.; Hólm, E.; Janisková, M.; Keeley, S.; Laloyaux, P.; Lopez, P.; Lupu, C.; Radnoti, G.; de Rosnay, P.; Rozum, I.; Vamborg, F.; Vilaume, S. & Thépaut, J.N. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999-2049. DOI: https://doi.org/10.1002/qj.3803
Holton, J.R. 1973. An introduction to dynamic meteorology. American Journal of Physics, 41(5): 752-754.
Hoskins, B.J. & Hodges, K.I. 2005. A new perspective on Southern Hemisphere storm tracks. Journal of Climate, 18(20): 4108-4129. DOI: https://doi.org/10.1175/JCLI3570.1
Jin, Z.; You, Q.; Mu, M.; Sun, G. & Pepin, N. 2020. Fingerprints of anthropogenic influences on vegetation change over the Tibetan Plateau from an eco‐hydrological diagnosis. Geophysical Research Letters, 47(15):1-22. DOI: https://doi.org/10.1029/2020GL087842
Kepert, J.D. 2010. Tropical cyclone structure and dynamics. In: CHAN, J.C. & KEPERT, J.D. (Eds.). Global perspectives on Tropical cyclones: from science to mitigation. Editora World Scientific, p. 3-53.
Kodama, Y. 1992. Large-scale common features of subtropical precipitation zones (the Baiu frontal zone, the SPCZ, and the SACZ) Part I: Characteristics of subtropical frontal zones. Journal of the Meteorological Society of Japan. Ser. II, 70(4): 813-836. DOI: https://doi.org/10.2151/jmsj1965.70.4_813
Kousky, V.E. 1988. Pentad outgoing longwave radiation climatology for the South American sector. Revista Brasileira de Meteorologia, 3(1): 217-231.
Kuo, Y.H., Low-Nam, S. & Reed, R.J. 1991. Effects of surface energy fluxes during the early development and rapid intensification stages of seven explosive cyclones in the western Atlantic. Monthly Weather Review, 119(2): 457-476. DOI: https://doi.org/10.1175/1520-0493(1991)119<0457:EOSEFD>2.0.CO;2
Kuo, Y.H. & Reed, R.J. 1988. Numerical simulation of an explosively deepening cyclone in the eastern Pacific. Monthly Weather Review, 116(10): 2081-2105. DOI: https://doi.org/10.1175/1520-0493(1988)116<2081:NSOAED>2.0.CO;2
Lin, S.J. & Chou, K.H. 2020. The Lightning Distribution of Tropical Cyclones over the Western North Pacific. Monthly Weather Review, 148(11): 4415-4434. DOI: https://doi.org/10.1175/MWR-D-19-0327.1
Marengo, J.A.; Alves, L.M.; Ambrizzi, T.; Young, A.; Barreto, N.J. & Ramos, A.M. 2020. Trends in extreme rainfall and hydrogeometeorological disasters in the Metropolitan Area of São Paulo: a review. Annals of the New York Academy of Sciences, 1471(1): 1–16. DOI: https://doi.org/10.1111/nyas.14307
Marrafon, V.H.D.A. & Reboita, M.S. 2019. Revisitando a Equação do Desenvolvimento de Sutcliffe. Anuário do Instituto de Geociências, 41(3): 614-629. DOI: http://dx.doi.org/10.11137/2018_3_614_629
McTaggart-Cowan, R.; Bosart, L.F.; Davis, C.A.; Atallah, E.H.; Gyakum, J.R. & Emanuel, K.A. 2006. Analysis of Hurricane Catarina (2004). Monthly Weather Review, 134: 3029–3053. DOI: https://doi.org/10.1175/MWR3330.1
McTaggart-Cowan, R., Davies, E.L., Fairman, J.G., Galarneau, T.J. & Schultz, D.M. 2015. Revisiting the 26.5°C Sea Surface Temperature Threshold for Tropical Cyclone Development. Bulletin of the American Meteorological Society, 96: 1929–1943. DOI: https://doi.org/10.1175/BAMS-D-13-00254.1
McTaggart-Cowan, R.; Galarneau Jr, T.J.; Bosart, L.F.; Moore, R.W. & Martius, O. 2013. A global climatology of baroclinically influenced tropical cyclogenesis. Monthly Weather Review, 141(6): 1963-1989. DOI: https://doi.org/10.1175/MWR-D-12-00186.1
Mendonça, F. & Danni-Oliveira, I.M. 2017. Climatologia: noções básicas e climas do Brasil. São Paulo, Oficina de textos, 206 p.
Mogil, H.M. 2007. Extreme weather: Understanding the science of hurricanes, tornadoes, floods, heat waves, snow storms, global warming and other atmospheric disturbances. Nova York, Black Dog & Leventhal, 304 p.
NOAA. 2018. Rare Subtropical Storm off the Coast of Chile. Disponível em: <https://www.nesdis.noaa.gov/content/rare-subtropical-storm-coast-chile> Acesso em: 12 out. 2020.
Nóbrega, R.S. & Santiago, G.A.C.F. 2014. Tendência de temperatura na superfície do mar nos oceanos Atlântico e Pacífico e variabilidade de precipitação em Pernambuco. Mercator (Fortaleza), 13(1): 107-118. DOI: https://doi.org/10.4215/RM2014.1301.0008
Nuss, W.A. & Anthes, R.A. 1987. A numerical investigation of low-level processes in rapid cyclogenesis. Monthly Weather Review, 115(11): 2728-2743. DOI: https://doi.org/10.1175/1520-0493(1987)115<2728:ANIOLL>2.0.CO;2
Palmén, E.H. 1956. A review of knowledge on the formation and development of tropical cyclones. In: TROPICAL CYCLONE SYMPOSIUM, 1956. Proceedings, Brisbane, Australia, Bureau of Meteorology, p. 213–231.
Pezza, A.B. & Simmonds, I. 2005. The first South Atlantic hurricane: Unprecedented locking, low shear and climate change. Geophysical Research Letters, 32(15): 1-5. DOI: https://doi.org/10.1029/2005GL023390
Piva, E.; Moscati, M.C.D.L. & Gan, M.A. 2008. Papel dos fluxos de calor latente e sensível em superfície associado a um caso de ciclogênese na costa leste da América do Sul. Revista Brasileira de Meteorologia, 23(4): 450-476. DOI: https://doi.org/10.1590/S0102-77862008000400006
Rahman, M.S. & Islam, A.R.M.T. 2019. Are precipitation concentration and intensity changing in Bangladesh overtimes? Analysis of the possible causes of changes in precipitation systems. Science of The Total Environment, 690: 370-387. DOI: https://doi.org/10.1016/j.scitotenv.2019.06.529
Reboita, M.S. 2008. Ciclones Extratropicais sobre o Atlântico Sul: Simulação Climática e Experimentos de Sensibilidade. 2008. Programa de Pós-graduação em Meteorologia, Universidade de São Paulo, Tese de Doutorado, 360p.
Reboita, M.S.; da Rocha, R.P.; Ambrizzi, T. & Sugahara, S. 2010a. South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Climate Dynamics, 35(7): 1331-1347. DOI: https://10.1007/s00382-009-0668-7
Reboita, M.S.; da Rocha, R.P.; Ambrizzi, T. & Caetano, E. 2010b. An assessment of the latent and sensible heat flux on the simulated regional climate over Southwestern South Atlantic Ocean. Climate Dynamics, 34(6): 873-889. DOI: https://10.1007/s00382-009-0681-x
Reboita, M.S.; Gan, M.A.; Rocha, R.P.D. & Ambrizzi, T. 2010c. Regimes de precipitação na América do Sul: uma revisão bibliográfica. Revista Brasileira de Meteorologia, 25(2): 185-204. DOI: http://dx.doi.org/10.1590/S0102-77862010000200004
Reboita, M.S.; Krusche, N.; Ambrizzi, T. & da Rocha, R.P.D. 2012. Entendendo o Tempo e o Clima na América do Sul. Terrae Didatica, 8(1): 34-50.
Reboita, M.S.; da Rocha, R.P.; Ambrizzi, T. & Gouveia, C.D. 2015. Trend and teleconnection patterns in the climatology of extratropical cyclones over the Southern Hemisphere. Climate Dynamics, 45(7-8): 1929-1944. DOI: https://doi.org/10.1007/s00382-014-2447-3
Reboita, M.S.; Rodrigues, M.; Armando, R.; Freitas, C.; Martins, D. & Miller, G. 2016. Causas da semi-aridez do sertão nordestino. Revista Brasileira de Climatologia, 19: 2237-8642. DOI: http://dx.doi.org/10.5380/abclima.v19i0.42091
Reboita, M.S.; Gan, M.A.; da Rocha, R.P.D. & Custódio, I.S. 2017a. Ciclones em Superfície nas Latitudes Austrais: Parte I-Revisão Bibliográfica. Revista Brasileira de Meteorologia, 32(2): 171-186. DOI: http://dx.doi.org/10.1590/0102-77863220010
Reboita, M.S.; Gan, M.A.; da Rocha, R.P. & Custódio, I.S. 2017b. Ciclones em Superfície nas Latitudes Austrais: Parte II Estudo de Casos. Revista Brasileira de Meteorologia, 32(4): 509-542. DOI: http://dx.doi.org/10.1590/0102-7786324002
Reboita, M.S.; da Rocha, R.P. & Oliveira, D.M.D. 2019a. Key Features and adverse weather of the named subtropical cyclones over the Southwestern South Atlantic Ocean. Atmosphere, 10(1): 6. DOI: https://doi.org/10.3390/atmos10010006
Reboita, M.S.; Ambrizzi, T.; Silva, B.A.; Pinheiro, R.F. & da Rocha, R.P. 2019b. The South Atlantic subtropical anticyclone: present and future climate. Frontiers in Earth Science, 7(8): 1-15. DOI: https://doi.org/10.3389/feart.2019.00008
Reboita, M.S.; Oliveira, D.M.; da Rocha, R.P. & Dutra, L.M.M. 2019c. Subtropical cyclone Anita's potential to tropical transition under warmer sea surface temperature scenarios. Geophysical Research Letters, 46(14): 8484-8489. DOI: https://doi.org/10.1029/2019GL083415
Reboita M.S.; Crespo N.M.; Dutra L.M.M.; Silva B.A.; Capucin, B.C & da Rocha, R.P. 2020. Iba: the First Pure Tropical Cyclogenesis over the Western South Atlantic Ocean. Journal of Geophysical Research: Atmospheres, 126(1): 1-20. DOI: https://10.1029/2020JD033431
Rogers, E. & Bosart, L.F. 1991. A diagnostic study of two intense oceanic cyclones. Monthly Weather Review, 119(4): 965-996. DOI: https://doi.org/10.1175/1520-0493(1991)119<0965:ADSOTI>2.0.CO;2
Santos, D.F. & Reboita, M.S. 2018. Jatos de baixos níveis a leste dos andes: comparação entre duas reanálises. Revista Brasileira de Climatologia, 22: 423-445. DOI: http://dx.doi.org/10.5380/abclima.v22i0.47595
Santos, T.C.D.; Reboita, M.S. & Carvalho, V.S.B. 2018. Investigação da Relação entre Variáveis Atmosféricas e a Concentração de MP10 e O3 no estado de São Paulo. Revista Brasileira de Meteorologia, 33(4): 631-645. DOI: https://doi.org/10.1590/0102-7786334006
Seluchi, M.E. & Garreaud, R.D. 2012. Campos médios e processos físicos associados ao ciclo de vida da Baixa do Chaco. Revista Brasileira de Meteorologia, 27(4): 447-462. DOI: http://dx.doi.org/10.1590/S0102-77862012000400008
Seluchi, M.E. & Saulo, A.C. 2012. Baixa do Noroeste Argentino e Baixa do Chaco: características, diferenças e semelhanças. Revista Brasileira de Meteorologia, 27(1): 49-60. DOI: https://doi.org/10.1590/S0102-77862012000100006
Shapiro, M.A. & Keyser, D. 1990. Fronts, jet streams and the tropopause. In: NEWTON, C.W. & HOLOPAINEN, E.O. (Eds). Extratropical cyclones, American Meteorological Society, p. 167-191.
Silva, J.P.R.; Reboita, M.S. & Escobar, G.C.J. 2019. Caracterização da Zona de Convergência do Atlântico Sul em Campos Atmosféricos recentes. Revista Brasileira de Climatologia, 25: 355-37. DOI: http://dx.doi.org/10.5380/abclima.v25i0.64101
Solman, S.A. & Blázquez, J. 2019. Multiscale precipitation variability over South America: Analysis of the added value of CORDEX RCM simulations. Climate Dynamics, 53(3): 1547-1565. DOI: https://doi.org/10.1007/s00382-019-04689-1
Song, Y.; Wang, L.; Lei, X. & Wang, X. 2015. Tropical cyclone genesis potential index over the western North Pacific simulated by CMIP5 models. Advances in Atmospheric Sciences, 32(11): 1539-1550. DOI: https://doi.org/10.1007/s00376-015-4162-3
Tang, B.H.; Fang, J.; Betley, A.; Kilroy, G.; Nakano, M.; Park, M.S.; Rajasree, V.P.M.; Wang, Z.; Wing, A.A. & Wu, L. 2020. Recent advances in research on tropical cyclogenesis. Tropical Cyclone Research and Review, 9: 87-105. DOI: https://doi.org/10.1016/j.tcrr.2020.04.004
Teodoro, T.A.; Reboita, M.S. & Escobar, G.C.J. 2019. Caracterização da Banda Dupla da Zona de Convergência Intertropical (ZCIT) no Oceano Atlântico. Anuário do Instituto de Geociências, 42(2): 282-298. DOI: http://dx.doi.org/10.11137/2019_2_282_298
The Weather Channel. 2018. Extremely Rare Southeast Pacific Subtropical Cyclone Forms Off the Chilean Coast. Disponível em: <https://weather.com s-1torms/hurricane/news/2018-05-08- subtropical-cyclone-chile> Acesso em: 14 out. 2020.
Tian, F.; Zhou, T. & Zhang, L. 2013. Tropical cyclone genesis potential index over the western North Pacific simulated by LASG/IAP AGCM. Acta Meteorologica Sinica, 27(1): 50-62. DOI: https://10.1007/s13351-013
Tory, K.J. & Frank, W.M. 2010. Tropical cyclone formation. Global perspectives on tropical cyclones: From science to mitigation, 55-91. DOI: https://doi.org/10.1142/9789814293488_0002
Uccellini, L.W.; Petersen, R.A.; Kocin, P.J.; Brill, K.F. & Tuccillo, J.J. 1987. Synergistic interactions between an upper-level jet streak and diabatic processes that influence the development of a low-level jet and a secondary coastal cyclone. Monthly Weather Review, 115(10): 2227-2261. DOI: https://doi.org/10.1175/1520-0493(1987)115<2227:SIBAUL>2.0.CO;2
Vianello, R. & Alves, A. 2012. Meteorologia básica e aplicações. Viçosa, Editora UFV, 460 p.
Wallace, J.M. & Hobbs, P.V. 2006. Atmospheric science: an introductory survey (Vol. 92). Londres, Elsevier, 473 p.
Walsh, K.; Lavender, S.; Scoccimarro, E. & Murakami, H. 2013. Resolution dependence of tropical cyclone formation in CMIP3 and finer resolution models. Climate Dynamics, 40: 585–599. DOI: https://10.1007/s00382-012-1298-z
Wang, B. & Moon, J.Y. 2017. An anomalous genesis potential index for MJO modulation of tropical cyclones. Journal of Climate, 30(11): 4021-4035. DOI: https://doi.org/10.1175/JCLI-D-16-0749.1
Yang, H.; Lohmann, G.; Lu, J.; Gowan, E.J.; Shi, X.; Liu, J. & Wang, Q. 2020. Tropical expansion driven by poleward advancing midlatitude meridional temperature gradients. Journal of Geophysical Research: Atmospheres, 125(16): 1-18. DOI: https://doi.org/10.1029/2020JD033158
Ynoue, R.Y.; Reboita, M.S.; Ambrizzi, T. & da Silva, G.A. 2017. Meteorologia: noções básicas. São Paulo, Oficina de Textos, 182 p.
Zehr, R.M. 1992. Tropical cyclogenesis in the western North Pacific. NOAA Tech, Repository NESDIS 61, 181 p.
Zhang, M.; Zhou, L.; Chen, D. & Wang, C. 2016. A genesis potential index for W estern N orth P acific tropical cyclones by using oceanic parameters. Journal of Geophysical Research: Oceans, 121(9): 7176-7191. DOI: https://doi.org/10.1002/2016JC011851
Zhang, Y.; Wang, H.; Sun, J. & Drange, H. 2010. Changes in the tropical cyclone genesis potential index over the western North Pacific in the SRES A2 scenario. Advances in Atmospheric Sciences, 27(6): 1246-1258. DOI: https://doi.org/10.1007/s00376-010-9096-1
Zhou, J. & Lau, K.M. 1998. Does a monsoon climate exist over South America? Journal of climate, 11(5): 1020-1040. DOI: https://doi.org/10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2
Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2021 Anuário do Instituto de Geociências
This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.