Evaluation of LiDAR Point Clouds Density in the Interpolation of Digital Terrain Models for Power Line Planning in Northeast Brazil

Autores

DOI:

https://doi.org/10.11137/1982-3908_2022_45_40773

Palavras-chave:

DTM, Airborne laser, Transmission lines

Resumo

Mapping activities for the implementation of basic and executive projects for electric power transmission lines systematically involves topographic surveys. This study presents the results of a comparative study on the influence of the density of aerial survey points, LiDAR (Light Detection and Ranging), for the calculation of digital terrain models (DTMs) in typical areas of the northeastern region of Brazil, in the context of modeling ground for planning electricity transmission lines. The study area is the region covered by the 230 kV Ibicoara/Brumado transmission line, located in the state of Bahia/Brazil.. In part of this region, elevations of the mountains of the Western Edge of Chapada Diamantina predominate. Therefore, points with varying densities were used to interpolate DTMs in different environments. Point cloud classification (Airborne LiDAR) was performed using the TerraScan program using semi-automatic classification methods, followed by manual refinements. To evaluate the terrain models obtained with different point densities, four areas were selected under transmission line: Area 1 (24.4/m2), Area 2 (46.0/m2), Area 3 (33.7/m2) e Area 4 (29.7/m2). The Airborne LiDAR survey was performed with an Optech ALTM Pegasus HD500 sensor, calibrated to obtain a density of 15 points/m2. The results showed that, depending on the nature of the vegetation cover, less dense laser surveys do not offer enough quality to generate DTMs. However, in some cases, when the vegetation is denser and the terrain is not flat, the quality of the DTM decreases as the density of the points decreases. The study shows that the survey density must be suitable for the region to be analyzed. An important guideline would be to repeat this study in other areas with different coverage and relief variations, in order to create specifications to serve as a basis for planning LiDAR surveys on other transmission lines.

Biografia do Autor

Jorge Antonio Silva Centeno, Universidade Federal do Parana - Departamento de Geomática

Jorge Antonio Silva Centeno nasceu em La Paz, Bolívia. Possui graduação em Engenharia Civil pela Universidade Federal de Mato Grosso do Sul (1988), mestrado em Recursos Hídricos e Saneamento Ambiental pela Universidade Federal do Rio Grande do Sul (1991) e doutorado em Geodésia - Universitat Karlsruhe (2000). Atualmente é professor titular do Departamento de Geomática da Universidade Federal do Paraná. Tem experiência na área de Geociências, com destaque em Fotogrametria, atuando principalmente nos seguintes temas: sensoriamento remoto, scanner a laser, cartografia, fotogrametria e processamento de imagens.

Claudionor Ribeiro Silva, Universidade Federal de Uberlândia

Graduado em Engenharia de Agrimensura na Universidade Federal de Viçosa. Mestrado e Doutorado em Ciências Geodésicas na Universidade Federal do Paraná. Pós-Doutorado na Universidade do Porto / Pt. Professor DE na Universidade Federal do Piauí (2006-2011). Professor Associado DE na Universidade Federal de Uberlândia (2011 / Atual). Tem experiência na área de Geociências, com ênfase em Sensoriamento Remoto e Fotogrametria; atua principalmente nos temas: Imagens multiespectrais e de alta resolução espacial; Dados Laser Scanner; Processamento digital de imagens; Inteligência Artificial; Extração / Detecção de feições em imagens elevadas e integradas com dados altimétricos; Uso do Sensoriamento Remoto e da Fotogrametria nas Ciências Ambientais. Membro Permanente do Programa de Pós-Graduação em Ecologia e Conservação dos Recursos Naturais (PPGECRN - INBIO / UFU - 2012/2015); Membro Permanente do Programa de Pós-Graduação em Meio Ambiente e Qualidade Ambiental (PPGMQ - ICIAG / UFU - 2013 / Atual); Membro do Programa de Pós-Graduação em Geografia (PPGEO - IG / UFU - 2020 / Atual). 

Referências

ABNT/NBR-5422 – 1985. Projeto Eletromecânico de Linhas Aéreas de Transmissão de Energia Elétrica. Associação Brasileira de Normas Técnicas. Rio de Janeiro.

Ackermann, F. Airborne laser scanning – present status and future expectations. 1999. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3): 64-67.

Berg, R.; Fergunson, J. 2001. Mapping Ontario’s highways with LIDAR, Gim International, Canadá, 15(11): 44- 47.

CBIE (2020) - Centro Brasileiro de Infra Estrutura (CBIE) Disponível em: https://cbie.com.br/artigos/quantos-quilometros-de-linha-de-transmissao-de-energia-temos-no-brasil/. Acesso em: 11/03/2020.

Chen, Q.; Gong, P.; Baldocchi, D.; Xin, G. 2007. Filtering Airborne LASER Scanning Data with Morphological Methods. Photogrammetric Engineering & Remote Sensing, 73(2): 175–185.

Dias, J.C.F.; Carter. W.E.; Shrestha, R.L.; Glennie, C.L. 2014. Now You SeeIt...Now You Don’t: Understanding Airborne Mapping LiDAR Collection and Data Product Generation for Archaeological Research in Mesoamerica. Remote Sensing, 6(10): 9951–10001.

Diaz, J.C.F. 2011. Lifting the canopy veil, Ariborne LiDAR for archeologyof forested areasImaging Notes. Earth Remote Sensing for Security Energy and the Environment, 26(2): 31-34.

Dong, P. & Chen, Q. I. 2018. LiDAR Remote Sensing and APPLICATIONS. CRC Press. Taylor e Francis Group. LLC, Florida, USA 197p.

DSG. 2011. Especificação técnica para aquisição de dados geoespaciais vetoriais. Versão 2.1.3. 2011.

Hui, Z.; Lia S.; Ziggahc Y.Y.; Wanga, L. & Hud Y. 2019. Automatic DTM extraction from airborne LiDAR based on expectationmaximization. Optics and Laser Technology 112: 43–55.

Jwa, Y.; Sohn, G. & Kim, H. B., 2009. Automatic 3D Powerline Reconstruction Using Airborne Lidar Data. In.: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS2009), 38(03): 105-110.

Kim, H.B. & Sohn, G. 2010. 3D Classification of Power-Line Scene from Airborne Laser Scanning Data Using Random Forests. International Archives of Photogrammetry and Remote Sensing, 38 (3A): 126-132.

Kim, H.B. & Sohn, G. 2011 Random Forests Based Multiple Classifier System for Power- Line Scene Classification. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Calgary, v. XXXVIII-5/W12, p. 253- 258.

Kraus, K.; Pfeifer, N. 1998. Determination of terrain models in wooded areas with airborne laser scanner data. . ISPRS Journal of Photogrammetry and Remote Sensing, 53: 193-203.

LBI ArchPro 2020 - Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology. Available at: HTTP://LBI-ARCHPRO.ORG/ALS-FILTERING/LBI-PROJECT/. Accessed: 06 june 2020.

Lin, X. & Zhang J. 2014. Segmentation-based filtering of airborne LiDAR point clouds by progressive densification of terrain segments, Remote Sens. 6 (2): 1294–1326

Liu, X.Y. 2008. Airborne LiDAR for DEM generation: Some critical issues. Prog. Phys. Geogr.:32: 31–49.

Matikaine, L.; Lehtomäki, M.; Ahokas , E.; Hyyppä, J.; Karjalainen, M. Jaakkola, A.; Kukko, A.; Heinonen, T. 2016. Remote sensing methods for power line corridor surveys. ISPRS Journal of Photogrammetry and Remote Sensing, 119: 10–31.

Mongus, D. & Zalik, B. 2014. Computationally Efficient Method for the Generation of a Digital Terrain Model from Airborne LiDAR Data Using Connected Operators. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sensing, 7: 340–351.

Jensen, J. R. 2009. Sensoriamento Remoto do Ambiente: uma perspectiva em recursos terrestres. 1. ed. São José dos Campo: Parêntese, 598 p.

Pacheco, A. P.; Centeno, J.; Assunção, M. E. & Botelho, M. 2011. Classificação de Pontos LIDAR para a Geração do MDT. Boletim de Ciências Geodésicas, 17(3): 417-438.

RIMA. 2009. Relatório de Impacto Ambiental LT 230 Kv Ibicoara/Brumado II. http://www.chesf.gov.br/portal/page/portal/chesf_portal/conteudos_portal/docs/rima_lt_230_kv_ibicoara__brumado_ii_c1_e_se_ibicoara_230_kv__138_kv.pdf. Acesso em: 01/01/2020.

Schuffert, S. 2013. An Automatic Data Driven Approach to Derive Photovoltaic-Suitable Roof Surfaces from ALS Data. Urban Remote Sensing Event (JURSE). São Paulo, p. 267-270.

Shan, J. & Toth, C. K. 2018.Topographic Laser Ranging and Scanning: Principles and Processing; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9781498772273 9.

Shimalesky, M. B; Mitishita, E; Neto, A. C. 2009. Reconhecimento e classificação da cobertura vegetal a partir de informações provenientes do LASER scanning empregando a função discriminante linear de Fischer. Pesquisas em Geociências, 2 (36): 141-148.

Schimdt, A.; Rotteensteiner, U.& Sörgel, U. 2012. Classification of Airbone Laser Scanning Data in Wadden Sea Areas Using Conditional Random Fields. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne, vol, XXXIX-B3, p. 161-166.

Simpson, J. E.; Smith, T. E. L. & Wooster M. J. 2017. Remote Sensing. 9: 1101 doi:10.3390/rs9111101.

Sithole, G.; Vosselman, G. 2003. Comparison of Filter Algorithms. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. 34 (Part 3/W130): 71-78.

Vögtle, T.; Steinle, E. 2005. Detection and recognition of changes in building geometry derived from multitemporal LASER scanning data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 35 (B).

Vosselman, G. 1999. Building reconstruction using planar faces in very high dnsity height data. International Archives of Photogrammetry and Remote Sensing, Munich, Germany.

Vosselmann, G. 2000. Slope Based Filtering of Laser Altimetry Data. International Archives of Photogrammetry and Remote Sensing, Amsterdam 33(B3): 935-942.

Vosselman, G.; Maas, H.G. 2010. Airborne and Terrestrial Laser Scanning. CRC Press. 320p.

Xiao, J.; Gerke, M.; Vosselman, G. 2010. Automatic detection of buildings with rectangular flat roofs from multi - view oblique imagery. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Paris, France, 38(3A): 251-256.

Zhang, J. & Lin, X. 2013. Filtering airborne LiDAR data by embedding smoothness-constrained segmentation in progressive TIN densification. ISPRS Journal of Photogramm. Remote Sensing. 81: 44–59.

Zhang, Y.; Men, L. 2010. Study of the airborne LIDAR data filtering methods. In Proceedings of the International Conference on Geoinformatics: GIScience in Change, Beijing, China, 18–20 June 2010.

Zhu, L.; Hyyppä, J., 2014, Fully-Automated Power Line Extraction from Airborne Laser Scanning Point Clouds in Forest Areas. Remote Sensing, 6(11): 11267-11282; DOI:10.3390/rs61111267.

Downloads

Publicado

2022-07-15

Edição

Seção

Geografia