Monitoring Retrogradation in Starch-Based Films Reinforced with Plasma-Treated Lignin Using FTIR-PCA Analysis

Authors

DOI:

https://doi.org/10.55747/bjedis.v4i2.68637

Abstract

Biodegradable films based on biomaterials have gained significant attention as sustainable alternatives to conventional plastic packaging, offering reduced environmental impact and potential for functional tailoring. In this study, starch films were reinforced with lignin, both untreated and modified by low-temperature plasma treatment, and analyzed after storage periods of 30 days and 2 years. The effects of lignin concentration, plasma surface modification, and sample aging were investigated through Fourier Transform Infrared Spectroscopy (FTIR) and multivariate Principal Component Analysis (PCA). Spectral data revealed variations in band intensities and shifts, particularly in regions associated with hydroxyl, methylene, and glycosidic linkages, indicating structural reorganization. PCA enabled the discrimination of samples based on lignin content, plasma treatment, and aging status, highlighting specific spectral features responsible for the observed differences. The findings demonstrate that plasma-modified lignin can alter molecular organization and long-term properties of starch films, offering a promising strategy for tuning the physicochemical behavior of biopolymeric materials.

Downloads

Download data is not yet available.

Author Biographies

Eduardo Genner Ferreira de Almeida, Universidade Federal do Rio de Janeiro (UFRJ)

Nanotechnology Engineering Program, COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil.

Tiago dos Santos Mendonça, Universidade Federal do Rio de Janeiro (UFRJ)

Metallurgical and Materials Engineering Program, COPPE – Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil.

Lucas Galhardo Pimenta Tienne, Federal University of Rio de Janeiro (UFRJ)

Polymer Science and Technology Program, IMA, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil.

Tiago Albertini Balbino, Universidade Federal do Rio de Janeiro (UFRJ)

Nanotechnology Engineering Program, COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil.

Renata Antoun Simao, Universidade Federal do Rio de Janeiro (UFRJ)

Metallurgical and Materials Engineering Program, COPPE – Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil.

References

1. Jiang, T., Duan, Q., Zhu, J., Liu, H., 2020. Starch-based biodegradable materials: Challenges and opportunities. Advanced Industrial and Engineering Polymer Research, 3, 8-18. DOI: https://doi.org/10.1016/j.aiepr.2019.11.003

2. Singh, P., Pandey, V. K., Singh, R., Singh, K., Dash, K. K., Malik, S., 2024. Unveiling the potential of starch-blended biodegradable polymers for substantializing the eco-friendly innovations. Journal of Agriculture and Food Research, 15, 101065. DOI: https://doi.org/10.1016/j.jafr.2024.101065

3. Liu, F., Ren, J., Yang, Q., Zhang, Q., Zhang, Y., Xiao, X., Cao, Y., 2024. Improving water resistance and mechanical properties of starch-based films by incorporating microcrystalline cellulose in a dynamic network structure. International Journal of Biological Macromolecules, 260, 129404. DOI: https://doi.org/10.1016/j.ijbiomac.2024.129404

4. Pooja, N., Shashank, S., Singh, B. N., Mazumder, N., 2024. Advancing sustainable bioplastics: chemical and physical modification of starch films for enhanced thermal and barrier Properties. RSC Advances, 14, 23943-23951. DOI: https://doi.org/10.1039/d4ra04263h

5. Diyana, Z. N., Jumaidin, R., Selamat, M. Z., Ghazali, I., Julmohammad, N., Ilyas, R. A., 2021. Physical Properties of Thermoplastic Starch Derived from Natural Resources and Its Blends: A Review. Polymers, 13(9), 1396. DOI: https://doi.org/10.3390/polym13091396

6. Liu, Q., Luo, L., Zheng, L., 2018. Lignins: Biosynthesis and Biological Functions in Plants. Int. J. Mol. Sci., 19(2), 335. DOI: https://doi.org/10.3390/ijms19020335

7. Boarino, A., Klok, H-A., 2023. Opportunities and Challenges for Lignin Valorization in Food Packaging, Antimicrobial, and Agricultural Applications. Biomacromolecules, 24, 1065–1077. DOI: https://doi.org/10.1021/acs.biomac.2c01385

8. Han, Z-W., Wang, H-M, Chen, X., Wu, Y-C., Hou, Q-X., 2025. Lignin reinforced eco-friendly and functional nanoarchitectonics materials with tailored interfacial barrier performance. Journal of Colloid and Interface Science, 684, 735-757. DOI: https://doi.org/10.1016/j.jcis.2025.01.033

9. Fazeli, M., Simao, R. A., 2019. Preparation and characterization of starch composites with cellulose nanofibers obtained by plasma treatment and ultrasonication. Plasma Process Polym., 16:1800167. DOI: https://doi.org/10.1002/ppap.201800167

10. Souza, J. R., Araujo, J. R., Archanjo, B. S., Simao, R. A., 2019. Cross-linked lignin coatings produced by UV light and SF6 plasma treatments. Progress in Organic Coatings, 128, 82-89. DOI: https://doi.org/10.1016/j.porgcoat.2018.12.017

11. Wu, Z., Chen, S., Liang, J., Li, L., Xi, X., Deng, X., Zhang, B., Lei, H., 2021. Plasma Treatment Induced Chemical Changes of Alkali Lignin to Enhance the Performances of Lignin-Phenol-Formaldehyde Resin Adhesive. Journal of Renewable Materials, 9, 1959-1972. DOI: https://doi.org/10.32604/jrm.2021.016786

12. Cao, Y., Tang, M., Yang, P., Chen, M., Wang, S., Hua, H., Chen, W., Zhou, X., 2019. Atmospheric Low-Temperature Plasma-Induced Changes in the Structure of the Lignin Macromolecule: An Experimental and Theoretical Investigation. Agric. Food Chem., 68, 451–460. DOI: https://doi.org/10.1021/acs.jafc.9b05604

13. Ruwoldt, J., Blindheim, F. H., Carrasco, G. C., 2023. Functional surfaces, films, and coatings with lignin – a critical review. RSC Adv., 13, 12529-12553. DOI: https://doi.org/10.1039/D2RA08179B

14. Montoya-Escobar, N., Ospina-Acero, D., Velásquez-Cock, J.A., Gómez-Hoyos, C., Serpa Guerra, A., Gañan Rojo, P.F., Vélez Acosta, L.M., Escobar, J.P., Correa-Hincapié, N., Triana-Chávez, O., et al., 2022. Use of Fourier Series in X-ray Diffraction (XRD) Analysis and Fourier-Transform Infrared Spectroscopy (FTIR) for Estimation of Crystallinity in Cellulose from Different Sources. Polymers, 14, 5199. DOI: https://doi.org/10.3390/polym14235199

15. Sakač, N., Gvozdić, V., Sak-Bosnar, M., 2012. Determination of the botanical origin of starch using direct potentiometry and PCA. Carbohydrate Polymers, 87, 2619-2623. DOI: https://doi.org/10.1016/j.carbpol.2011.11.038

16. Lin, L., Guo, K., Zhang, L., Zhang, C., Wei, C., 2019. Effects of molecular compositions on crystalline structure and functional properties of rice starches with different amylopectin extra-long chains. Food Hydrocolloids, 88, 137-145. DOI: https://doi.org/10.1016/j.foodhyd.2018.09.033

17. Pozo, C., Rodríguez-Llamazares, S., Bouza, R., Barral, L., Castaño, J., Müller, N., Restrepo, I., 2018. Study of the structural order of native starch granules using combined FTIR and XRD analysis. J Polym Res., 25, 266. DOI: https://doi.org/10.1007/s10965-018-1651-y

18. Gurbanov, R., Tunçer, S., 2021. The Use of Fourier-Transform Infrared Spectroscopy to Determine Potential Starch-based Prebiotics. Journal Of Agriculture and Nature, 24, 22-30. DOI: https://doi.org/10.18016/ksutarimdoga.vi.742250

19. Pozo, C., Rodríguez-Llamazares, S., Bouza, R., Barral, L., Castaño, J., Müller, N., Restrepo, I., 2018. Study of the structural order of native starch granules using combined FTIR and XRD analysis. Journal of polymer research, 25, 266. DOI: https://doi.org/10.1007/s10965-018-1651-y

20. Shrestha, A. K., Ng, C. S., Lopez-Rubio, A., Blazek, J., Gilbert, E. P., Gidley, M. J., 2010. Enzyme resistance and structural organization in extruded high amylose maize starch. Carbohydrate Polymers, 80, 699-710. DOI: https://doi.org/10.1016/j.carbpol.2009.12.001

21. Van Soest, J. J. G., Tournois, H., Wit, D., Viliegenthart, J. F. G., 1995.Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydrate Research, 279, 201-214. DOI: https://doi.org/10.1016/0008-6215(95)00270-7

22. Wilson, R. H., Belton, P. S., 1988. A Fourier-transform infrared study of wheat starch gels. Carbohydrate Research, 180, 339-344. DOI: https://doi.org/10.1016/0008-6215(88)80090-9

23. Ferreira da Silva, Y., Alencastro, F. S., Souza, N. D., Oliveira, R. N., Simao, R. A., 2023. Investigating the origin of laser-induced fluorescence in mannan-rich Phytelephas macrocarpa seeds before and after thermal aging, Carbohydrate Polymers, 308, 120632. DOI: https://doi.org/10.1016/j.carbpol.2023.120632

24. Medeghini, L., Mignardi, S., Vito, C., Conte, A. M., 2016. Evaluation of a FTIR data pretreatment method for Principal Component Analysis applied to archaeological ceramics. Microchemical Journal, 125, 224-229. DOI: https://doi.org/10.1016/j.microc.2015.11.033

25. Warren, F. J., Gidley, M. J., Flanagan, B. M., 2016. Infrared spectroscopy as a tool to characterise starch ordered structure—a joint FTIR–ATR, NMR, XRD and DSC study. Carbohydrate Polymers, 139, 35-42. DOI: https://doi.org/10.1016/j.carbpol.2015.11.066

26. Kizil, R., Irudayaraj, J., Seetharaman, K., 2002. Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. Journal of Agricultural and Food Chemistry, 50, 3912-3918. DOI: https://doi.org/10.1021/jf011652p

27. Nikonenko, N. A., Buslov, D. K., Sushko, N. I., Zhbankov, R. G., 2005. Spectroscopic manifestation of stretching vibrations of glycosidic linkage in polysaccharides. Journal of Molecular Structure, 752, 20-24. DOI: https://doi.org/10.1016/j.molstruc.2005.05.015

28. Kotov, N., Keskitalo, M. M., Johnson, C. M., 2025. Nano FTIR spectroscopy of liquid water in the –OH stretching region. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 330, 125640. DOI: https://doi.org/10.1016/j.saa.2024.125640

Downloads

Published

2025-12-29