ECOLOGIA FUNCIONAL COMO FERRAMENTA PARA PLANEJAR E MONITORAR A RESTAURAÇÃO ECOLÓGICA DE ECOSSISTEMAS

Authors

DOI:

https://doi.org/10.4257/oeco.2020.2403.02

Keywords:

functional traits, ecosystem functioning, restoration ecology, ecological processes.ogical restoration, ecological processes

Abstract

A ecologia funcional tem se mostrado uma ferramenta importante em diversos estudos ecológicos. Atributos funcionais respondem a filtros ambientais e influenciam propriedades e funções ecossistêmicas, podendo ser aplicados em estudos ecológicos voltados à restauração de ecossistemas. No presente estudo apresentamos como a ecologia funcional pode ser aplicada no âmbito da ecologia da restauração, desde o planejamento até o monitoramento dos projetos, com foco no funcionamento dos ecossistemas. O estudo primeiramente contextualiza a teoria ecológica associada à interligação entre as disciplinas de ecologia da restauração, funcionamento de ecossistemas e ecologia funcional. Em seguida, apresentamos os resultados de uma pesquisa bibliográfica sistemática e descrevemos como a ecologia baseada em atributos funcionais tem sido aplicada no planejamento e monitoramento de projetos de restauração. Na fase de planejamento, a ecologia funcional auxilia na escolha das espécies com base em suas características, levando em conta as condições ambientais e os potenciais filtros para o desenvolvimento das espécies, bem como as metas propostas para o projeto de restauração. Na fase de monitoramento, os atributos podem ser empregados na avaliação da funcionalidade do ecossistema, dadas as relações entre atributos e processos ecológicos. Concluímos indicando que é importante focar não só na composição florística das comunidades, mas principalmente na manutenção e restauração das funções ecossistêmicas, especialmente frente ao cenário de mudanças climáticas e de uso do solo. A interligação entre restauração ecológica e funcionamento dos ecossistemas (objetivo comum em projetos de restauração) pode ser viabilizada através de abordagens baseadas em atributos funcionais, aumentando a efetividade na aplicação de recursos e o sucesso das ações de restauração.

FUNCTIONAL ECOLOGY AS A TOOL FOR PLANNIG AND MONITORING ECOSYSTEMS RESTORATION: Functional ecology is an important tool in several ecological studies. Functional traits respond to environmental filters and influence ecosystem properties and functions, enabling its application in ecological studies associated with ecosystem restoration. In the present study we present how functional ecology can be applied in restoration ecology, from the planning to the monitoring phases of the project, with the focus on ecosystem functioning. First, the study contextualizes the ecological theory related to the integration of the disciplines of restoration ecology, ecosystem functioning and functional ecology. From that, we present the results of a systematic review of the literature and describe how trait-based ecology has been applied in the planning and monitoring phases of restoration projects. In the planning phase functional ecology helps in selecting species based on their characteristics, considering environmental conditions and potential filters to species development, as well as the targeted aims of restoration projects. In the monitoring phase functional traits can be used in the evaluation of ecosystem functionality, given the relationship between traits and ecological processes. We conclude indicating that it is important to focus not only on community floristic composition, but especially on the maintenance and restoration of ecosystem functions, particularly, in light of the current scenario of climate and land-use change. The integration between restoration ecology and ecosystem functioning – a common goal in ecological restoration projects – can be made through trait-based ecology approaches, increasing the effectiveness in the use of resources and the success of restoration interventions.

Author Biographies

Milena Fermina Rosenfield, University of Guelph

School of Environmental Sciences

Sandra Cristina Müller, Universidade Federal do Rio Grande do Sul

Departamento de Ecologia

References

Bird, R. B., & Nimmo, D. 2018. Restore the lost ecological functions of people. Nature Ecology & Evolution, 2, 1050–1052. DOI: https://doi.org/10.1038/s41559-018-0576-5

Bochet, E., & Garcia-Fayos, P. 2015. Identifying plant traits: A key aspect for species selection in restoration of eroded roadsides in semiarid environments. Ecological Engineering, 83, 444–451. DOI: 10.1016/j.ecoleng.2015.06.019

Brancalion, P. H. S., & Holl, K. D. 2016. Functional composition trajectory: a resolution to the debate between Suganuma, Durigan, and Reid. Restoration Ecology, 24(1), 1–3. DOI: 10.1111/rec.12312

Buchmann, T., Schumacher, J., Ebeling, A., Eisenhauer, N., Fischer, M., Gleixner, G., Hacker, N., Lange, M., Oelmann, Y., Schulze, E.-D., Weigelt, A., Weisser, W. W., Wilcke, W., & Roscher, C. 2018. Connecting experimental biodiversity research to real-world grasslands. Perspectives in Plant Ecology, Evolution and Systematics, 33, 78–88. DOI: doi.org/10.1016/j.ppees.2018.06.002

Cadotte, M. W., Arnillas, C. A., Livingstone, S. W., & Yasui, S. L. E. 2015. Predicting communities from functional traits. Trends in Ecology and Evolution, 30(9), 510–511. DOI: 10.1016/j.tree.2015.07.001

Calmon, M., Brancalion, P. H. S., Paese, A., Aronson, J., Castro, P., Silva, S. C., & Rodrigues, R. R. 2011. Emerging Threats and Opportunities for Large-Scale Ecological Restoration in the Atlantic Forest of Brazil. Restoration Ecology, 19(2), 154–158. DOI: 10.1111/j.1526-100X.2011.00772.x

Cardinale, B. J., Wright, J. P., Cadotte, M. W., Carroll, I. T., Hector, A., Srivastava, D. S., Loreau, M., & Weis, J. J. 2007. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences, 104(46), 18123–18128. DOI: 10.1073/pnas.0709069104

Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. 2009. Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366. DOI: 10.1111/j.1461-0248.2009.01285.x

Chaves, R. B., Durigan, G., Brancalion, P. H. S., & Aronson, J. 2015. On the need of legal frameworks for assessing restoration projects success: New perspectives from São Paulo state (Brazil). Restoration Ecology, 23(6), 754–759. DOI: 10.1111/rec.12267

Chazdon, R. L., Brancalion, P. H. S., Lamb, D., Laestadius, L., Calmon, M., & Kumar, C. 2017. A policy-driven knowledge agenda for global forest and landscape restoration. Conservation Letters, 10(1), 125–132. DOI: 10.1111/conl.12220

Clark, D. L., Wilson, M., Roberts, R., Dunwiddie, P. W., Stanley, A., & Kaye, T. N. 2012. Plant traits - a tool for restoration? Applied Vegetation Science, 15, 449–458. DOI: 10.1111/j.1654-109X.2012.01198.x

Cortina, J., Maestre, F. T., Vallejo, R., Baeza, M. J., Valdecantos, A., & Pérez-Devesa, M. 2006. Ecosystem structure, function, and restoration success: Are they related? Journal for Nature Conservation, 14(3–4), 152–160. DOI: 10.1016/j.jnc.2006.04.004

de Bello, F., Lavorel, S., Díaz, S., Harrington, R., Cornelissen, J. H. C., Bardgett, R. D., Berg, M. P., Cipriotti, P., Feld, C. K., Hering, D., da Silva, P. M., Potts, S. G., Sandin, L., Sousa, J. P., Storkey, J., Wardle, D. A., & Harrison, P. A. 2010. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation, 19(10), 2873–2893. DOI: 10.1007/s10531-010-9850-9

de Meira, M., Pereira, I., Machado, E., Mota, S., & Otoni, T. 2015. Potential species for recovery areas semideciduous forest in iron exploration in the Serra Espinhaco. Bioscience Journal, 31(1), 283–295.

Díaz, S., Lavorel, S., de Bello, F., Quetier, F., Grigulis, K., & Robson, T. M. 2007. Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences, 104(52), 20684–20689. DOI: 10.1073/pnas.0704716104

Durigan, G., & Ramos, V. S. 2013. Manejo Adaptativo: primeiras experiências na Restauração de Ecossistemas. São Paulo, Brazil: p. 50.

Dzwonko, Z., & Loster, S. 2007. A functional analysis of vegetation dynamics in abandoned and restored limestone grasslands. Journal of Vegetation Science, 18(2), 203–212. DOI: 10.1111/j.1654-1103.2007.tb02531.x

Finegan, B., Peña-Claros, M., de Oliveira, A., Ascarrunz, N., Bret-Harte, M. S., Carreño-Rocabado, G., Casanoves, F., Díaz, S., Eguiguren Velepucha, P., Fernandez, F., Licona, J. C., Lorenzo, L., Salgado Negret, B., Vaz, M., & Poorter, L. 2015. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 103(1), 191–201. DOI: 10.1111/1365-2745.12346

Fournier, B., Gillet, F., Le Bayon, R., Mitchell, E., & Moretti, M. 2015. Functional responses of multitaxa communities to disturbance and stress gradients in a restored floodplain. Journal of Applied Ecology, 52(5), 1364–1373. DOI: 10.1111/1365-2664.12493

Freschet, G. T., Aerts, R., & Cornelissen, J. H. C. 2012. A plant economics spectrum of litter decomposability. Functional Ecology, 26(1), 56–65. DOI: 10.1111/j.1365-2435.2011.01913.x

Fujii, S., Mori, A. S., Koide, D., Makoto, K., Matsuoka, S., Osono, T., & Isbell, F. 2017. Disentangling relationships between plant diversity and decomposition processes under forest restoration. Journal of Applied Ecology, 54, 80–90. DOI: 10.1111/1365-2664.12733

Fukami, T. 2015. Historical Contingency in Community Assembly: Integrating Niches, Species Pools, and Priority Effects. Annual Review of Ecology, Evolution, and Systematics, 46, 1–23. DOI: 10.1146/annurev-ecolsys-110411-160340

Galetti, M., Pizo, M. A., & Morellato, L. P. C. 2011. Diversity of functional traits of fleshy fruits in a species-rich Atlantic rain forest. Biota Neotropica, 11(1), 181–194. DOI: 10.1590/S1676-06032011000100019

Garcia, Letícia C., Hobbs, R. J., Santos, F. A. M., & Rodrigues, R. R. 2014. Flower and Fruit Availability along a Forest Restoration Gradient. Biotropica, 46(1), 114–123. DOI: 10.1111/btp.12080

Garcia, Letícia Couto, Cianciaruso, M. V., Ribeiro, D. B., dos Santos, F. A. M., & Rodrigues, R. R. 2015. Flower functional trait responses to restoration time. Applied Vegetation Science, 18(3), 402–412. DOI: 10.1111/avsc.12163

Garnier, E., Cortez, J., Billès, G., Navas, M. L., Roumet, C., Debussche, M., Laurent, G., Blanchard, A., Aubry, D., Bellmann, A., Neill, C., & Toussaint, J. P. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85(9), 2630–2637. DOI: 10.1890/03-0799

Garnier, E., Navas, M.-L., & Grigulis, K. 2016. Plant Functional Diversity - organisms traits, community structure, and ecosystem properties. Oxford, UK: Oxford University Press: p. 231.

Grime, J. P. 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86, 902–910. DOI: 10.1046/j.1365-2745.1998.00306.x

Guimaraes, Z., dos Santos, V., Nogueira, W., Martins, N., & Ferreira, M. 2018. Leaf traits explaining the growth of tree species planted in a Central Amazonian disturbed area. Forest Ecology and Management, 430, 618–628. DOI: 10.1016/j.foreco.2018.08.048

Guzman-Luna, A., & Martinez-Garza, C. 2016. Performance of 15 tropical tree species recruited or transplanted on restoration settings. Botanical Sciences, 94(4), 757–773. DOI: 10.17129/botsci.659

Hallett, L., Chapple, D., Bickart, N., Cherbowsky, A., Fernandez, L., Ho, C., Alexander, M., Schwab, K., & Suding, K. 2017. Trait Complementarity Enhances Native Plant Restoration in an Invaded Urban Landscape. Ecological Restoration, 35(2), 148–155. DOI: 10.3368/er.35.2.148

Hedberg, P., Kozub, L., & Kotowski, W. 2014. Functional diversity analysis helps to identify filters affecting community assembly after fen restoration by top-soil removal and hay transfer. Journal of Nature Conservation, 22(1), 50–58. DOI: 10.1016/j.jnc.2013.08.004

Hedberg, P., Saetre, P., Sundberg, S., Rydin, H., & Kotowski, W. 2013. A functional trait approach to fen restoration analysis. Applied Vegetation Science, 16(4), 658–666. DOI: 10.1111/avsc.12042

Helsen, K., Hermy, M., & Honnay, O. 2013. Spatial isolation slows down directional plant functional group assembly in restored semi-natural grasslands. Journal of Applied Ecology, 50, 404–413. DOI: 10.1111/1365-2664.12037

Hiers, J. K., Mitchell, R. J., Barnett, A., Walters, J. R., MacK, M., Williams, B., & Sutter, R. 2012. The dynamic reference concept: Measuring restoration success in a rapidly changing no-analogue future. Ecological Restoration, 30(1), 27–36. DOI: 10.3368/er.30.1.27

Higgs, E., Falk, D. A., Guerrini, A., Hall, M., Harris, J., Hobbs, R. J., Jackson, S. T., Rhemtulla, J. M., & Throop, W. 2014. The changing role of history in restoration ecology. Frontiers in Ecology and the Environment, 12(9), 499–506. DOI: 10.1890/110267

HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M., & Mayfield, M. M. 2012. Rethinking Community Assembly through the Lens of Coexistence Theory. Annual Review of Ecology, Evolution, and Systematics, 43, 227–248. DOI: 10.1146/annurev-ecolsys-110411-160411

Holl, K. D., & Aide, T. M. 2011. When and where to actively restore ecosystems? Forest Ecology and Management, 261(10), 1558–1563. DOI: 10.1016/j.foreco.2010.07.004

Holl, Karen D., Zahawi, R. a., Cole, R. J., Ostertag, R., & Cordell, S. 2011. Planting seedlings in tree islands versus plantations as a large-scale tropical forest restoration strategy. Restoration Ecology, 19(4), 470–479. DOI: 10.1111/j.1526-100X.2010.00674.x

Hooper, D. U., Chapin, III, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setala, H., Symstad, A. J., Vandermeer, J., & Wardle, D. A. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75(1), 3–35. DOI: 10.1890/04-0922

Jochum, M., Fischer, M., Isbell, F., Roscher, C., van der Plas, F., Boch, S., Boenisch, G., Buchmann, N., Catford, J. A., Cavender-Bares, J., Ebeling, A., Eisenhauer, N., Gleixner, G., Hölzel, N., Kattge, J., Klaus, V. H., Kleinebecker, T., Lange, M., Le Provost, G., Meyer, S. T., Molina-Venegas, R., Mommer, L., Oelmann, Y., Penone, C., Prati, D., Reich, P. B., Rindisbacher, A., Schäfer, D., Scheu, S., Schmid, B., Tilman, D., Tscharntke, T., Vogel, A., Wagg, C., Weigelt, A., Weisser, W. W., Wilcke, W., & Manning, P. 2019. The results of biodiversity-ecosystem functioning experiments are realistic. BioRxiv, 725812. DOI: 10.1101/725812

Kageyama, P. Y., Oliveira, R. E., Moraes, L. F. D., Engel, V. L., & Gandara, F. B. 2003. Restauração ecológica de ecossistemas naturais. P. Y. Kageyama R. E. Oliveira L. F. D. Moraes V. L. Engel & F. B. Gandara (Eds.), Botucatu - SP: Fundação de Estudos e Pesquisas Agrícolas e Florestais - FEPAF: p. 340.

Kattge, J., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G., Garnier, E., Westoby, M., Reich, P. B., Wright, I. J., Cornelissen, J. H. C., Violle, C., Harrison, S. P., Van Bodegom, P. M., Reichstein, M., Enquist, B. J., Soudzilovskaia, N. A., Ackerly, D. D., Anand, M., Atkin, O., Bahn, M., Baker, T. R., Baldocchi, D., Bekker, R., Blanco, C. C., Blonder, B., Bond, W. J., Bradstock, R., Bunker, D. E., Casanoves, F., Cavender-Bares, J., Chambers, J. Q., Chapin, F. S., Chave, J., Coomes, D., Cornwell, W. K., Craine, J. M., Dobrin, B. H., Duarte, L., Durka, W., Elser, J., Esser, G., Estiarte, M., Fagan, W. F., Fang, J., Fernández-Méndez, F., Fidelis, A., Finegan, B., Flores, O., Ford, H., Frank, D., Freschet, G. T., Fyllas, N. M., Gallagher, R. V., Green, W. A., Gutierrez, A. G., Hickler, T., Higgins, S. I., Hodgson, J. G., Jalili, A., Jansen, S., Joly, C. A., Kerkhoff, A. J., Kirkup, D., Kitajima, K., Kleyer, M., Klotz, S., Knops, J. M. H., Kramer, K., Kühn, I., Kurokawa, H., Laughlin, D., Lee, T. D., Leishman, M., Lens, F., Lenz, T., Lewis, S. L., Lloyd, J., Llusià, J., Louault, F., Ma, S., Mahecha, M. D., Manning, P., Massad, T., Medlyn, B. E., Messier, J., Moles, A. T., Müller, S. C., Nadrowski, K., Naeem, S., Niinemets, Ü., Nöllert, S., Nüske, A., Ogaya, R., Oleksyn, J., Onipchenko, V. G., Onoda, Y., Ordoñez, J., Overbeck, G., Ozinga, W. A., Patiño, S., Paula, S., Pausas, J. G., Peñuelas, J., Phillips, O. L., Pillar, V., Poorter, H., Poorter, L., Poschlod, P., Prinzing, A., Proulx, R., Rammig, A., Reinsch, S., Reu, B., Sack, L., Salgado-Negret, B., Sardans, J., Shiodera, S., Shipley, B., Siefert, A., Sosinski, E., Soussana, J. F., Swaine, E., Swenson, N., Thompson, K., Thornton, P., Waldram, M., Weiher, E., White, M., White, S., Wright, S. J., Yguel, B., Zaehle, S., Zanne, A. E., & Wirth, C. 2011. TRY - a global database of plant traits. Global Change Biology, 17(9), 2905–2935. DOI: 10.1111/j.1365-2486.2011.02451.x

Kollmann, J., Meyer, S. T., Bateman, R., Conradi, T., Gossner, M. M., Mendonça Jr., M. de S., Fernandes, G. W., Hermann, J. M., Koch, C., Müller, S. C., Oki, Y., Overbeck, G. E., Paterno, G. B., Rosenfield, M. F., Toma, T. S. P., & Weisser, W. W. 2016. Integrating ecosystem functions into restoration ecology - recent advances and future directions. Restoration Ecology, 24(6), 722–730. DOI: 10.1111/rec.12422

Laughlin, D., Bakker, J., Stoddard, M., Daniels, M., Springer, J., Gildar, C., Green, A., & Covington, W. 2004. Toward reference conditions: wildfire effects on flora in an old-growth ponderosa pine forest. Forest Ecology and Management, 199(1), 137–152. DOI: 10.1016/j.foreco.2004.05.034

Laughlin, D. C. 2014. Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecology Letters, 17(7), 771–784. DOI: 10.1111/ele.12288

Laughlin, D. C., Chalmandrier, L., Joshi, C., Renton, M., Dwyer, J. M., & Funk, J. L. 2018. Generating species assemblages for restoration and experimentation: A new method that can simultaneously converge on average trait values and maximize functional diversity. Methods in Ecology and Evolution, 9, 1764–1771. DOI: 10.1111/2041-210X.13023

Laughlin, D. C., Leppert, J. J., Moore, M. M., & Sieg, C. H. 2010. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Functional Ecology, 24(3), 493–501. DOI: 10.1111/j.1365-2435.2009.01672.x

Laughlin, D. C., Richardson, S. J., Wright, E. F., & Bellingham, P. J. 2015. Environmental Filtering and Positive Plant Litter Feedback Simultaneously Explain Correlations Between Leaf Traits and Soil Fertility. Ecosystems, 18(7), 1269–1280. DOI: 10.1007/s10021-015-9899-0

Laughlin, D., Strahan, R., Moore, M., Fule, P., Huffman, D., & Covington, W. 2017. The hierarchy of predictability in ecological restoration: are vegetation structure and functional diversity more predictable than community composition? Journal of Applied Ecology, 54(4), 1058–1069. DOI: 10.1111/1365-2664.12935

Lavorel, S., & Garnier, E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16(5), 545–556. DOI: 10.1046/j.1365-2435.2002.00664.x

Lavorel, Sandra. 2013. Plant functional effects on ecosystem services. Journal of Ecology, 101(1), 4–8. DOI: 10.1111/1365-2745.12031

Loreau, M, Naeem, S., Inchausti, P., Bengtsson, J., Grime, J. P., Hector, A., Hooper, D. U., Huston, M. A., Raffaelli, D., Schmid, B., Tilman, D., & Wardle, D. A. 2001. Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges. Science, 294, 804–809. DOI: 10.1126/science.1064088

Loreau, Michel. 1998. Biodiversity and ecosystem functioning: A mechanistic model. Proceedings of the National Academy of Sciences, 95, 5632–5636. DOI: 10.1073/pnas.95.10.5632

Loreau, Michel, & Hector, A. 2001. Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72–76. DOI: 10.1038/35083573

Walter V. Reid, Harold A. Mooney, Angela Cropper, Doris Capistrano, Stephen R. Carpenter, Kanchan Chopra, Partha Dasgupta, Thomas Dietz, Anantha Kumar Duraiappah, Rashid Hassan, Roger Kasperson, Rik Leemans, Robert M. May, Tony (A.J.) McMichael, Prabhu Pingali, Cristián Samper, Robert Scholes, Robert T. Watson, A.H. Zakri, Zhao Shidong, Neville J. Ash, Elena Bennett, Pushpam Kumar, Marcus J. Lee, Ciara Raudsepp-Hearne, Henk Simons, Jillian Thonell, and Monika B. Zurek. 2005. Ecosystems and Human Well-being: Biodiversity Synthesis. MA (Millennium Ecosystem Assessment). Island Press, Washington, DC

Martínez-Garza, C., Bongers, F., & Poorter, L. 2013. Are functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures? Forest Ecology and Management, 303, 35–45. DOI: 10.1016/j.foreco.2013.03.046

Mason, N. W. H., Mouillot, D., Lee, W. G., & Wilson, J. B. 2005. Functional richness, functional and functional evenness divergence: the primary of functional components diversity. Oikos, 111(1), 112–118. DOI: 10.1111/j.0030-1299.2005.13886.x

Matzek, V., Warren, S., & Fisher, C. 2016. Incomplete recovery of ecosystem processes after two decades of riparian forest restoration. Restoration Ecology, 24(5), 637–645. DOI: 10.1111/rec.12361

McDonald, T., Gann, G. D., Jonson, J., & Dixon, K. W. 2016. International standards for the practice of ecological restoration - including principles and key concepts. Society for Ecological Restoration, Washington, D.C.

Melo, A., Daronco, C., Re, D., & Durigan, G. 2015. Tree species attributes and facilitation of natural regeneration in heterogeneous planting of riparian vegetation. Scientia Forestalis, 43(106), 333–344.

Mesquita, R. D. C. G., Massoca, P. E. D. S., Jakovac, C. C., Bentos, T. V., & Williamson, G. B. 2015. Amazon rain forest succession: stochasticity or land-use legacy? BioScience, 65(9), 849–861. DOI: 10.1093/biosci/biv108

Moles, A. T., & Westoby, M. 2004. Seedling survival and seed size: a synthesis of the literature. Journal of Ecology, 92(3), 372–383. DOI: 10.1111/j.0022-0477.2004.00884.x

Montoya-Pfeiffer, P., Rodrigues, R., Metzger, J., da Silva, C., Baquero, O., & dos Santos, I. 2018. Are the assemblages of tree pollination modes being recovered by tropical forest restoration? Applied Vegetation Science, 21(1), 156–163. DOI: 10.1111/avsc.12335

Norden, N., Angarita, H. A., Bongers, F., Martínez-Ramos, M., Granzow-de la Cerda, I., van Breugel, M., Lebrija-Trejos, E., Meave, J. A., Vandermeer, J., Williamson, G. B., Finegan, B., Mesquita, R., & Chazdon, R. L. 2015. Successional dynamics in Neotropical forests are as uncertain as they are predictable. Proceedings of the National Academy of Sciences of the United States of America, 112(26), 8013–8018. DOI: 10.1073/pnas.1500403112

O’Leary, B., Burd, M., Venn, S., & Gleadow, R. 2018. Integrating the Passenger-Driver hypothesis and plant community functional traits to the restoration of lands degraded by invasive trees. Forest Ecology and Management, 408, 112–120. DOI: 10.1016/j.foreco.2017.10.043

Oliveira, L. Z., Uller, H. F., Klitzke, A. R., Eleotério, J. R., & Vibrans, A. C. 2019. Towards the Fulfillment of a Knowledge Gap: Wood Densities for Species of the Subtropical Atlantic Forest. Data, 4(3), 104. DOI: 10.3390/data4030104

Ostertag, R., Warman, L., Cordell, S., & Vitousek, P. M. 2015. Using plant functional traits to restore Hawaiian rainforest. Journal of Applied Ecology, 52, 805–809. DOI: 10.1111/1365-2664.12413

Overbeck, G. E., Rosenfield, M. F., Vieira, M. S., & Müller, S. C. 2016. Princípios e desafios da restauração ecológica em ecossistemas brasileiros. In: A. L. Peixoto, J. R. P. Luz, & M. A. de Brito (Eds.), Conhecendo a biodiversidade. pp. 141–155. Brasília: MCTIC, CNPq, PPBio.

Perez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., de Vos, A. C., Buchmann, N., Funes, G., Quétier, F., Hodgson, J. G., Thompson, K., Morgan, H. D., ter Steege, H., van der Heijden, M. G. A., Sack, L., Blonder, B., Poschlod, P., Vaieretti, M. V., Conti, G., Staver, A. C., Aquino, S., & Cornelissen, J. H. C. 2013. New handbook for measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167–234. DOI: 10.1071/BT12225

Reid, J. L. 2015. Indicators of success should be sensitive to compositional failures: reply to Suganuma and Durigan. Restoration Ecology, 23(5), 519–520. DOI: 10.1111/rec.12254

Ricotta, C., & Moretti, M. 2011. CWM and Rao’s quadratic diversity: a unified framework for functional ecology. Oecologia, 167(1), 181–188. DOI: 10.1007/s00442-011-1965-5

Roberts, R., Clark, D., & Wilson, M. 2010. Traits, neighbors, and species performance in prairie restoration. Applied Vegetation Science, 13(3), 270–279. DOI: 10.1111/j.1654-109X.2009.01073.x

Rodrigues, R R, & Leitão Filho, H. F. 2001. Matas ciliares: conservação e recuperação. R R Rodrigues & H. F. Leitão Filho (Eds.), São Paulo, Brazil: Editora da Universidade de São Paulo - Fapesp: p. 320.

Rodrigues, Ricardo R., Lima, R. A. F., Gandolfi, S., & Nave, A. G. 2009. On the restoration of high diversity forests: 30 years of experience in the Brazilian Atlantic Forest. Biological Conservation, 142(6), 1242–1251. DOI: 10.1016/j.biocon.2008.12.008

Rosenfield, M. F., & Müller, S. C. 2017. Predicting restored communities based on reference ecosystems using a trait-based approach. Forest Ecology and Management, 391, 176–183. DOI: 10.1016/j.foreco.2017.02.024

Rosenfield, M. F., & Müller, S. C. 2019. Assessing ecosystem functioning in forests undergoing restoration. Restoration Ecology, 27(1), 158–167. DOI: 10.1111/rec.12828

Rosenfield, M. F., & Müller, S. C. 2020. Plant Traits Rather than Species Richness Explain Ecological Processes in Subtropical Forests. Ecosystems, 23, 52–66. DOI: 10.1007/s10021-019-00386-6

Ruiz-Jaen, M. C., & Aide, T. M. 2005. Restoration success: how is it being measured? Restoration Ecology, 13(3), 569–577. DOI: 10.1111/j.1526-100X.2005.00072.x

Ruiz-Jaén, M. C., & Aide, T. M. 2005. Vegetation structure, species diversity, and ecosystem processes as measures of restoration success. Forest Ecology and Management, 218(1–3), 159–173. DOI: 10.1016/j.foreco.2005.07.008

Ruiz-Jaen, M. C., & Potvin, C. 2010. Tree diversity explains variation in ecosystem function in a neotropical forest in Panama. Biotropica, 42(6), 638–646. DOI: 10.1111/j.1744-7429.2010.00631.x

SER (Society for Ecological Restoration International Science & Policy Working Group). 2004. The SER international primer on ecological restoration. Society for Ecological Restoration International Science & Policy Working Group. p. 13. Tucson, Arizona.

Shipley, B., de Bello, F., Cornelissen, J. H. C., Laliberté, É., Laughlin, D. C., & Reich, P. B. 2016. Reinforcing foundation stones in trait-based plant ecology. Oecologia, 180(4), 923–931. DOI: 10.1007/s00442-016-3549-x

Silva, R., & Vieira, D. 2017. Direct seeding of 16 Brazilian savanna trees: responses to seed burial, mulching and an invasive grass. Applied Vegetation Science, 20(3), 410–421. DOI: 10.1111/avsc.12305

Suding, K. N., Higgs, E., Palmer, M., Callicott, J. B., Anderson, C. B., Baker, M., Gutrich, J. J., Hondula, K. L., LaFevor, M. C., Larson, B. M. H., Randall, A., Ruhl, J. B., & Schwartz, K. Z. S. 2015. Committing to ecological restoration. Science, 348(6235), 638–640. DOI: 10.1126/science.aaa4216

Suganuma, M S, Assis, G. B. De, & Durigan, G. 2014. Changes in plant species composition and functional traits along the successional trajectory of a restored patch of Atlantic Forest. Community Ecology, 15(1), 27–36. DOI: 10.1556/ComEc.15.2014.1.3

Suganuma, Marcio S., & Durigan, G. 2015. Indicators of restoration success in riparian tropical forests using multiple reference ecosystems. Restoration Ecology, 23(3), 238–251. DOI: 10.1111/rec.12168

Suganuma, Marcio Seiji, & Torezan, J. M. D. 2013. Evolução dos processos ecossistêmicos em reflorestamentos da Floresta Estacional Semidecídua. Hoenea, 40(3), 557–565.

TEEB. 2010. The Economics of Ecosystems and Biodiversity Ecological and Economic Foundations. Pushpam Kumar (Ed.). Earthscan, London and Washington. p. 422.

Tilman, D., Isbell, F., & Cowles, J. M. 2014. Biodiversity and Ecosystem Functioning. Annual Review of Ecology and Systematics, 45, 471–493. DOI: 10.1126/science.1064088

Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., & Siemann, E. 1997. The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300–1302. DOI: 10.1126/science.277.5330.1300

Tilman, D., Wedin, D., & Knops, J. 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379(6567), 718–720. DOI: 10.1038/379718a0

Toledo, R., Santos, R., Baeten, L., Perring, M., & Verheyen, K. 2018. Soil properties and neighbouring forest cover affect above-ground biomass and functional composition during tropical forest restoration. Applied Vegetation Science, 21(2), 179–189. DOI: 10.1111/avsc.12363

Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. 2007. Let the concept of trait be functional! Oikos, 116(5), 882–892. DOI: 10.1111/j.2007.0030-1299.15559.x

von Gillhaussen, P., Rascher, U., Jablonowski, N. D., Plückers, C., Beierkuhnlein, C., & Temperton, V. M. 2014. Priority Effects of Time of Arrival of Plant Functional Groups Override Sowing Interval or Density Effects: A Grassland Experiment. PLoS ONE, 9(1), e86906. DOI: 10.1371/journal.pone.0086906

Weidlich, E. W. A., von Gillhaussen, P., Max, J. F. J., Delory, B. M., Jablonowski, N. D., Rascher, U., & Temperton, V. M. 2018. Priority effects caused by plant order of arrival affect below-ground productivity. Journal of Ecology, 106, 774–780. DOI: 10.1111/1365-2745.12829

Wright, I. J., Dong, N., Maire, V., Prentice, I. C., Westoby, M., Díaz, S., Gallagher, R. V., Jacobs, B. F., Kooyman, R., Law, E. A., Leishman, M. R., Niinemets, Ü., Reich, P. B., Sack, L., Villar, R., Wang, H., & Wilf, P. 2017. Global climatic drivers of leaf size. Science, 357, 917–921. DOI: 10.1126/science.aal4760

Young, T. P. 2000. Restoration ecology and conservation biology. Biological Conservation, 92(1), 73–83. DOI: 10.1016/s0006-3207(99)00057-9

Zhu, H., Fu, B., Wang, S., Zhu, L., Zhang, L., Jiao, L., & Wang, C. 2015. Reducing soil erosion by improving community functional diversity in semi-arid grasslands. Journal of Applied Ecology, 52(4), 1063–1072. DOI: 10.1111/1365-2664.12442

Published

2020-09-15