DINÂMICA NUTRICIONAL DOS DETRITOS VEGETAIS ALÓCTONES EM UMA MATA RIPÁRIA SUBTROPICAL

Authors

  • Lize Cancelier Caldas Universidade Federal de Santa Catarina
  • Leonardo Kleba Lisboa UFSC
  • Aurea Luiza Lemes Universidade Federal de Santa Catarina
  • Mauricio Mello Petrucio Universidade Federal de Santa Catarina

DOI:

https://doi.org/10.4257/oeco.2020.2403.06

Keywords:

temporal variation, nutritional content, plant input, subtropical stream

Abstract

O presente estudo avaliou as mudanças temporais no aporte de carbono, nitrogênio e fósforo presente nos detritos foliares alóctones em uma mata ripária subtropical, correlacionando os índices de precipitação e temperatura do ar. As hipóteses formuladas para este trabalho foram: (1) os dez táxons mais abundantes no local terão maior importância ecológica para o sistema aquático contribuindo nutricionalmente de forma mais representativa, entretanto, essa contribuição e importância podem se alterar temporalmente; (2) quanto menor a temperatura e maior o índice de precipitação, maiores serão as concentrações de nutrientes nos detritos foliares. Os procedimentos de coletas foram realizados mensalmente, durante dois anos, no riacho Cachoeira Grande, de Floresta Ombrófila Densa preservada, localizado em Florianópolis/SC. Foram demarcados em campo cinco pontos de coleta onde foram instalados os coletores verticais, laterais e terrestres. Os detritos vegetais coletados foram levados para o laboratório, secos em estufa, identificados, triados, pesados e triturados para as análises químicas. Os resultados deste trabalho mostraram que, conforme a hipótese 1, alguns táxons, como por exemplo Tetrorchidium rubrivenium e Sebastiania sp., apresentaram importância ecológica variável ao longo do tempo. Enquanto alguns detritos foliares continham concentrações nutricionais menores, outros táxons continham os nutrientes em maior quantidade. Mas, contrariando a hipótese 2, os índices de precipitação e as variações de temperatura não proporcionaram maiores entradas de nutrientes no sistema aquático, sugerindo-se que essas concentrações sejam influenciadas por outros fatores. Apesar das principais espécies do sistema apresentarem razões estequiométricas foliares diferentes, não houve período observado de carência no aporte de nutrientes, que, diferentemente a observações da literatura, não sofreram influência de variações na temperatura ou precipitação.

 

NUTRITIONAL DYNAMICS OF ALLOCHTHONOUS VEGETAL DEBRIS IN A SUBTROPICAL RIPARIAN FOREST: This study evaluated the temporal changes of carbon, nitrogen and phosphorus leaf litter content in the allochthonous input of a subtropical riparian forest, making correlations with precipitation and air temperature. We formulated the following hypotheses: (1) the 10 most abundant taxa will have greater ecological importance to the aquatic system by contributing nutritionally more, and this contribution can vary temporarily; (2) lower temperatures and higher the precipitations rates will increase the nutrition content of leaf litter. Samples were performed monthly during two years, in the Cachoeira Grande stream, located in a preserved Atlantic Rainforest segment in Florianopolis city, SC, Brazil. Five sample points were chosen to install vertical and terrestrial samplers. Leaf litter sampled was taken to laboratory, dried in oven, identified, weighted and triturated for chemical analyses. Results demonstrated that, as hypothesis 1 suggested, some taxa (e.g. Tetrorchidium rubrivenium and Sebastiania sp.) presented temporal variation in the ecological importance for the system. While some taxa showed lower nutritional content, others presented higher nutrient concentrations. However, against hypothesis 2, precipitation index and temperature variations were not correlated with higher nutrient input to the aquatic system, suggesting that this dynamic is influenced by other factors. Despite different stoichiometric values of the leaves, it was not observed a shortage period of nutrients input to the system. Differently to the observed literature, the nutrient content of the leaves did not suffer influence of temperature or precipitation variations.

References

Adair E. C., Binkley D., & Andersen D. C. 2004. Patterns of nitrogen accumulation and cycling in riparian floodpain ecosystems along the Green and Yamp rivers. Oecologia, 139(1),108–16. DOI: 10.1007/s00442-004-1486-6

Ågren G. I. 2004. The C:N:P stoichiometry of autotrophs: theory and observations. Ecology Letters, (3),185 – 191. DOI: 10.1111/j.1461-0248.2004.00567

Ågren G. I. 2008. Stoichiometry and Nutrition of Plant Growth in Natural Communities. Annual Review of Ecology Evolution and Systematics, 39(1),153–170. DOI: 10.1146/annurev.ecolsys.39.110707.173515

Ågren G. I., Weih M. 2012. Plant stoichiometry at different scales: element concentration patterns reflect environment more than genotype. New Phytol, 194(4), 944–952. DOI: 10.1111/j.1469-8137.2012.04114

Boeger, M. R. T., Wisniewski, C. & Reissmann, C. B. 2005. Nutrientes foliares de espécies arbóreas de três estádios sucessionais de floresta ombrófila densa no sul do Brasil. Acta Botanica Brasilica, 19(1),167–181. DOI: 10.1590/S0102-33062005000100017

Bolnick, D. I., Amarasekare P., Araújo M. S., Bürger R., Levine J. M., Novak M., Rudolf V. H. W., Schreiber S. J., Urban M. C., and Vasseur D. 2011. Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution, 26(4),183–192. DOI: 10.1016/j.tree.2011.01.0099

Bragazza L., Tahvanainen T., Kutnar L., Rydin H., Limpens J., Hajek M., Grosvernier P., Ha´jek T., Hajkova P., Hansen I., Iacumin P., Gerdol R. 2004. Nutritional constrains in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytologist, 163(3), 609–616. DOI: 10.1111/j.1469-8137.2004.01154

Broadley M. R., Bowen H. C., Cotterill H. L., Hammond J. P., Meacham M. C., Mead A., White P. J. 2004. Phylogenetic variation in the shoot mineral concentration of angiosperms. J Experimental Botany, 55(396), 321–336. DOI: 10.1093/jxb/erh002

Broadley MR, Willey NJ, Wilkins J, Baker AJM, Mead A, White PJ. 2001. Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytologist, 152(1), 9–27 10.1046/j.0028-646x.2001.00238

Cernusak L. A., Winter K., Turner B. L. 2010. Leaf nitrogen to phosphorus ratios of tropical trees: experimental assessment to physiological and environmental controls. New Phytologist, 185(3), 770–779. DOI: 10.1111/j.1469-8137.2009.03106

Conde Porcuna J. M., Ramos Rodríguez E., Pérez Martínez C. 2002. Correlations between nutrient concentrations and zooplankton populations in a mesotrophic reservoir. Freshwater Biology, 47(8), 1463–1473. DOI: 10.1046/j.1365-2427.2002.00882

Conners, M. E. and R. J. Naiman. 1984. Particulate allochthonous inputs: relationships with stream size in an undisturbed watershed. Canadian Journal of Fisheries and Aquatic Sciences, 41(10), 1473–1484. 25. DOI: 10.1139/f84-181

Cummins, K. W., J. R. Sedell, E. J. Swanson, E. W. Minshall, S. G. Fisher, C. E. Cushing, R.C. Peterson and R. L. Vannote, 1983. Organic matter budgets for stream ecosystems: problems in their evaluation. In: Barnes, J. R. and G. W. Minshall (eds.): Stream ecology, Application and Testing of General Ecological Theory. New York. Press, pp. 299–353. DOI: 10.1007/978-1-4613-3775-1_13

Cummins, K. W.,Wilzbach, M. A., Gates, D. M., Perry, J. B., and Taliaferro, W. B. 1989. Shredders and riparian vegetation. BioScience, 39(1), 24–30. DOI: 10.2307/1310804.

Cunha, G. C., Grendene, L. A., Durlo, M. A. & Bressan, D. A. 1993. Dinâmica nutricional em floresta estacional decidual com ênfase aos minerais provenientes da deposição da serapilheira. Ciência Florestal. 3(1), 35–64. DOI: 10.5902/19805098284

Dijkstra, F. A., Pendall, E., Morgan, J. A., Blumenthal, D. M., Carrillo, Y., LeCain, D. R., Follett, R. F., and Williams, D. G. 2012. Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytologist, 2012, 196(3), pp. 807–815. DOI: 10.1111/j.1469-8137.2012.04349

Elser J. J., Sterner R. W., Gorokhova E., Fagan W. F., Markow T. A., Cotner J. B., Harrison J. F., Hobbie S. E., Odell G. M., and Weider L. J. 2000. Biological stoichiometry from genes to ecosystems. Ecology Letters, 3(6), 540–550. DOI: 10.1111/j.1461-0248.2000.00185

Elser, J. J., Marzolf, E. R. & Goldman, C. R. 1990. Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: a review and critique of experimental enrichments. Canadian Journal of Fisheires and Aquatatic Sciences, 47(7), 1468–1477. DOI: 10.1139/f90-1655

Fiori L., Cionek V. M., Sacramento P. A. & Benedito E. 2016. Dynamics of leaf fall from riparian vegetation and the accumulation in benthic stock in Neotropical Streams. Revista Árvore, 40(1) 89–96. DOI: 10.1590/0100-67622016000100010.

Frost P. C., Evans-White M. A., Finkel Z. V., Jensen T. C., Matzek V. 2005. Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos, 109(1), 18–28. DOI: 10.1111/j.0030-1299.2005.14049

Fyllas N. M., Patiño S., Baker T. R., Nardoto G. B., Martinelli L. A., Quesada C. A., Paiva R., Schwarz M., Horna V., Mercado L. M., Santos A., Arroyo L., Jiménez E. M., Luizão F. J., Neill D. A., Silva N., Prieto A., Rudas A., Silviera M., Vieira I. C. G., Lopez-Gonzalez G., Malhi Y., Phillips O. L., and Lloyd J. 2009. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences, 6(2), 2677–2708. DOI: 10.5194/bg-6-2677-2009

Graça, M. A. S. & Zimmer, M. 2005. Leaf toughness. In: Graça, M.A.S., Barlocher, F. & Gessner, M.O. Methods to Study Litter Decomposition: A Practical Guide. Freshwater Biology, pp. 75–84. DOI: 10.1007/1-4020-3466-0

Güsewell S. 2004. N: P ratios in terrestrial plants: Variation and functional significance. New Phytology, 164(2), 243–266. DOI: 10.1111/j.1469-8137.2004.01192

Güsewell, S., Koerselman W., Verhoeven J. T. A. 2003a. Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecological Applications, 13(2), 372–384. DOI: 10.1890/1051-0761(2003)013[0372:BNRAIO]2.0.CO;2

Han, W., Fang, J., Guo, D. & Zhang, Y. 2005. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168(2), 377–385. DOI: 10.1111/j.1469-8137.2005.01530

Han,W. X., Fang, J. Y., Reich, P. B.,Woodward, F. I. & Wang, Z. H. 2011. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 14(8), 788–796. DOI: 10.1111/j.1461-0248.2011.01641

Hättenschwiler, S., B. Aeschlimann, M. M. Couteaux, J. Roy & D. Bonal. 2008. High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytologist, 179(1), 165–75. DOI: 10.1111/j.1469-8137.2008.02438

He JS., Fang J., Wang Z., Guo D., Flynn D. F. B., Geng Z. 2006. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149(1), 115–122. DOI: 10.1007/s00442-006-0425-0

Hennemann, M. C. and Petrucio, M. M. 2010. Seasonal phytoplankton response to increased temperature and phosphorus inputs in a freshwater coastal lagoon, Southern Brazil: a microcosm bioassay. Acta Limnologica Brasiliensia, 22(3), 295–305. DOI: 10.4322/actalb.02203006

Jacomine, P. K. T. 2009. Solos sob matas ciliares. In: Rodrigues, R.R. & Leitão Filho, H.F. (eds.) Matas ciliares: Conservação e recuperação. 2nd.ed. São Paulo, Universidade de São Paulo, FAPESP, 2009. pp. 27–31.

Jacobs, S. M., Naiman, R. J. 2007. Large African herbivores decrease herbaceous plant biomass while increasing plant species richness. Journal of Arid Environments, 72(6), 891–903 DOI: 10.1016/j.jaridenv.2007.11.0155

Kattge J., Díaz S., Lavorel S., Prentice I. C., Leadley P., Bönisch G., Garnier E., Westoby M., Reich P. B., Wright I. J., Cornelissen J. H. C., Violle C., Harrison S. P., van Bodegom P. M., Reichstein M., Enquist B. J., Soudzilovskaia N. A., Ackerly D. D., Anand M., Atkin O., Bahn M., Baker T. R., Baldocchi D., Bekker R., Blanco C. C., Blonder B., Bond W. J., Bradstock R., Bunker D. E, Casanoves F., Cavender‐Bares J., Chambers J.Q., Chapin III F. S., Chave J., Coomes D., Cornwell W. K., Craine J. M., Dobrin B. H., Duarte L., Durka W., Elser J., Esser G., Estiarte M., Fagan W. F., Fang J., Fernández‐Méndez F., Fidelis A., Finegan B., Flores O., Ford H., Frank D., Freschet G.T., Fyllas N. M., Gallagher R. V., Green W. A., Gutierrez A. G., Hickler T., Higgins S. I., Hodgson J. G., Jalili A., Jansen S., Joly C. A., Kerkhoff A. J., Kirkup D., Kitajima K., Kleyer M., Klotz S., Knops J. M. H., Kramer K., Kühn I., Kurokawa H., Laughlin D., Lee T. D., Leishman M., Lens F., Lenz T., Lewis S. L., Lloyd J., Llusià J., Louault F., Ma S., Mahecha M. D., Manning P., Massad T., Medlyn BB. E., Messier J., Moles A. T., Müller S. C., Nadrowski K., Naeem S., Niinemets U., Nöllert S., Nüske A., Ogaya R., Oleksyn J., Onipchenko V. G., Onoda Y., Ordoñez J., Overbeck G., Ozinga W. A., Patiño S., Paula S., Pausas J. G., Peñuelas J., Phillips O. L., Pillar V., Poorter H., Poorter L., Poschlod P., Prinzing A., Proulx R., Rammig A., Reinsch S., Reu B., Sack L., Salgado‐Negret B., Sardans J., Shiodera S., Shipley B., Siefert A., Sosinski E., Soussana J-F., Swaine E., Swenson N., Thompson K., Thornton P., Waldram M., Weiher E., White M., White S., Wright S. J., Yguel B., Zaehle S., Zanne A. E., and Wirth C. 2011. TRY–a global database of plant traits. Global Change Biology, 17(9), 2905–2935. DOI: 10.1111/j.1365-2486.2011.02451

Kerkhoff, A. J., Enquist, B. J. 2006. Ecosystem allometry: the scaling of nutrient stocks and primary productivity across plant communities. Ecology Letters, 9(4), 419–427. DOI: 10.1111/j.1461-0248.2006.00888

Kerkhoff, A. J., Fagan, W. F., Elser, J. J. & Enquist, B. J. 2006. Phylogenetic and growth formvariation in the scaling of nitrogen and phosphorus in the seed plants. The American Naturalist, 168(4), 103–122. DOI: 10.1086/507879

Klein, R. M. 1980. Ecologia da flora e vegetação do Vale do Itajaí. Sellowia, 32(32), 165–389. ISSN: 0375-1651

Koerselman, W., Meuleman A. F. M. 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33(6), 1441–1450. DOI:10.2307/2404783

Kominoski, J. S. and Rosemond, D. 2012. Conservation from the bottom up: forecasting effects of global change on dynamics of organic matter and management needs for river networks. Freshwater Science, 31(1), 51–68. DOI: 10.1899/10-160.1

Körner, C. 1989. The nutritional status of plants from high altitudes: a worldwide comparison. Oecologia, 81(3), 379–391. DOI: 10.1007/BF00377088

Lima, W. P. and Zakia, M. J. B. 2000. Hidrologia de matas ciliares. In: Rodrigues, R.R.; Leitão Filho, H.F. Matas ciliares: conservação e recuperação. São Paulo: EDUSP/ Fapesp, 2000, pp. 33-44.

Lisboa, K. L. 2014. Dinâmica da vegetação ripária em riachos de Mata Atlântica subtropical: composição da matéria orgânica alóctone e interação com invertebrados aquáticos. Dissertação de mestrado. Universidade Federal de Santa Catarina. Florianópolis. p. 89.

Marschner H. 1995. Mineral Nutrition of Higher Plants. London: The Annals of Botany Company, 78(4), 527–528. DOI: 10.1006/anbo.1996.0155.

McGroddy, M. E., Daufresne, T., Hedin, L. O. 2004. Scaling of C : N : P stoichiometry in forests worldwide: Implications of terrestrial redfield-type ratios. Ecology, 85(9), 2390–2401. DOI: 10.1890/03-0351

Méndez, M. and Karlsson, P. S. 2005. Nutrient stoichiometry in Pinguicula vulgaris: nutrient availability, plant size, and reproductive status. Ecology, 86(4), 982–991. DOI: 10.1890/04-0354

Murphy, J. & Riley, J. P. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, (27) 31–36. DOI: 10.1016/S0003-2670(00)88444-5

Naiman, R. J. and Décamps, H. 1997. The ecology of interfaces: riparian zones. Annual Review Ecological System, v.28(1), 621–658. DOI: 10.1146/annurev.ecolsys.28.1.621

Nascimento, R. 2002. Atlas ambiental de Florianópolis. Florianópolis, SC: Instituto Larus, p. 81.

Niklas, K. J., Owens T., Reich P. B., Cobb E. D. 2005. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters, 8(6), 636–642. DOI: 10.1111/j.1461-0248.2005.00759

Oliveira, E. C. L. & Felfili, J. M. 2005. Estrutura e dinâmica da regeneração natural de uma mata de galeria no Distrito Federal, Brasil. Acta Botanica Brasilica. 19(4), 801–811. DOI: 10.1590/S0102-33062005000400016

Ordoñez, J. C., van Bodegom, P. M., Witte, J. P. M., Wright, I. J., Reich, P. B. & Aerts, R. 2009. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18(2), 137–149. DOI: 10.1111/j.1466-8238.2008.00441

Peel, M. C., B. L. Finlayson, and T. A. McMahon. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633−1644. DOI: 10.5194/hess-11-1633-2007

Reich, P. B., Falster, D. S., Ellsworth, D. S., Wright, I. J., Westoby, M., et al. 2009. Controls on declining carbon balance with leaf age among 10 woody species in Australian woodland: do leaves have zero daily net carbon balances when they die? New Phytology, 183(1),153–166. DOI: 10.1111/j.1469-8137.2009.02824

Reich, P. B., Oleksyn J. 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101(30), 11001–11006. DOI: 10.1073/pnas.0403588101

Ricklefs, R. E., Matthew, K. K. 1982. Chemical characteristics of the foliage of some deciduous trees in southeastern Ontario. Canadian Journal of Botany, 60(10), 2037–2045. DOI: 10.1139/b82-251

Rodrigues, R. R., Leitão Filho, H. de F. 2004. Matas Ciliares: Conservação e Recuperação. 2. ed. 1ª: Editora da Universidade de São Paulo, 2004. p. 320. ISBN-13: 978-8531405679

Sardans J., Penuelas J. 2007. Drought changes phosphorus and potassium accumulation patterns in an evergreen Mediterranean forest. Functional Ecology, 21(2),191–201. DOI: 10.1111/j.1365-2435.2007.01247

Sardans, J., Penuelas, J., Estiarte, M., Prieto, P. 2008. Warming and drought alter C and N concentration, allocation and accumulation in a Mediterranean shrubland. Global Change Biology, 14(10), 2304–2316. Doi: 10.1111/j.1365-2486.2008.01656

Sardans, J., Rivas-Ubach, A., Peñuelas, J. 2011. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organism life style and ecosystem structure and function: A review and perspectives. Biogeochemistry, 111(1-3), 1–39. DOI:10.1007/s10533- 011-9640-9

Scalley, T. H., Scatena, F. N., Moya, S. & Lugo, A.E. 2012. Long-term dynamics of organic matter and elements exported as coarse particulates from two Caribbean montane watersheds. Journal of Tropical Ecology, 28(2), 127–139. DOI: 10.1017/S0266467411000733

Schlesinger, W. H. 1997. Biogeochemistry: An Analysis of Global Change. Geological Magazine, 135(6), 819–842. DOI: 10.1017/S0016756898231505

Silva-Júnior, M. C., Felfili, J. M., Walter, B. M. T., P. E. Nogueira, P. E., Rezende, A. V., Morais, R. O. & Nóbrega, M. G. G. 2001. Análise da flora arbórea de mata de galeria no Distrito Federal: 21 levantamentos. In: J.F. Ribeiro, C.E.L. Fonseca & J.C. Sousa-Silva, (eds.) Cerrado: caracterização e recuperação de matas de galeria. Planaltina: Embrapa Cerrados, pp. 143–191.

Sterner, R. W., Elser, J. J. 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton:Princeton University Press. p. 584. ISBN-13: 978-0691074917

Tank, J. L., Rosi-Marshall, E. J., Griffiths, na., Entrekin, S. A. & Stephen, M. L. 2010. A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society, 29(1), 118–146. DOI: 10.1899/08-170.1

Tedesco, M. J., Gianello, C., Issani, C. A., Bohnen, H., Volkweiss, S. J. 1995. Análise de solo, plantas e outros materiais. Boletim Técnico, 5. 2nd ed. Porto Alegre: UFRGS- Departamento de Solos, p. 174.

Tonin et al. 2017. Plant litter dynamics in the forest stream interface: precipitation is a major control across tropical biomes. Scientific Reports, 7(1), 10799. DOI:10.1038/s41598-017-10576-8

Thompson, K., Parkinson, J. A., Band, S. R. & Spencer, R. E. 1997. A comparative study of leaf nutrient concentration in a regional herbaceous flora. New Phytologist, 136(4), 679–689. DOI: https://doi.org/10.1046/j.1469-8137.1997.00787

Tibbets, T. M., and M. C. Molles. 2005. C:N:P stoichiometry of dominant riparian trees and arthropods along the middle Rio Grande. Freshwater Biology, 50(11), 1882–1894. 10.1111/j.1365-2427.2005.01465

Tonetta, D., Petrucio, M. M. and Laudaressilva, R. 2013. Temporal variation in phytoplankton community in a freshwater coastal lake of southern Brazil. Acta Limnologica Brasiliensia, 25(1), 99–110. DOI: 10.1590/S2179-975X2013000100011

Veloso, H. P., Rangel Filho, A. L. R., Lima, J. C. A. 1991. Classificação da vegetação brasileira, adaptada a um sistema universal. Rio de Janeiro: FIBGE/PROJETO RADAMBRASIL. p. 124. ISBN85-240-0384-7

Vibrans, A. C. et al. 2013. Floresta Ombrófila Densa. In: Inventário Florístico Florestal de Santa Catarina. Santa Catarina: Edifurb. 4(3), p. 293. DOI: 10.4336/2010.pfb.64.291

Vital, A. R. T., Guerrini, I. A., Franken, W. K. & Fonseca, R. C. B. 2004. Produção de serapilheira e ciclagem de nutrientes de uma Floresta Estacional Semidecidual em zona ripária. Revista Árvore, 28(6), 793–800. DOI: 10.1590/S0100-67622004000600004

Vitousek, P. M., Porder, S., Houlton, B. Z., Chadwick, O. A. 2010. Terrestrial phosphorus limitation: mechanisms, implications and nitrogen-phosphorus interactions. Ecological Applications, 20(1), 5–15. DOI: 10.1890/08-0127.1

White, P. J., Bowen, H. C., Marshall, B. & Broadley, M. R. 2007. Extraordinarily high leaf selenium to sulfur ratios define ‘Se-accumulator’ plants. Annals of Botany, 100(1), 111–118. DOI: 10.1093/aob/mcm084

Yuan, Z. Y., Chen, H. Y. H., Reich. P. B. 2011. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus. Nature Communications, 2(1), 344. DOI: 10.1038/ncomms1346

Zasoski, R. J. and Burau, R. G. 1977. A rapid nitric-perchloric acid digestion method for multi-element tissue analysis. Communications in Soil Science and Plant Analysis, 8(5), 425–436. DOI: 10.1080/00103627709366735

Zhang, S. B., Zhang, J. L., Slik, J., Cao, K. F. 2012. Leaf element concentrations of terrestrial plants across China are influenced by taxonomy and the environment. Global Ecology and Biogeography, 21(8), 809–818. Doi: 10.1111/j.1466-8238.2011.00729

Published

2020-09-15