PHYTOPLANKTON FUNCTIONAL GROUPS DRIVEN BY ALTERNATIVE STATES IN A TROPICAL FLOODPLAIN LAKE (PANTANAL, BRAZIL)
DOI:
https://doi.org/10.4257/oeco.2019.2304.16Palavras-chave:
microalgae, shallow lakes, wetland.Resumo
The flood pulse associated with local factors is the main drivers of the phytoplankton functional groups. The aim of this study was to evaluate the dynamics of the phytoplankton community and the Reynolds Functional Groups (RFG) and their relationships with the alternative states in a Pantanal floodplain lake. The Coqueiro Lake (municipality of Poconé, state of Mato Grosso, Brazil) was sampled monthly at three sites from April 2002 to May 2003. Three periods were identified: i) period I (first receding) with colonization of Egeria najas (Alismatales, Hydrocharitaceae), reduced depths and clear waters, characterized by the lowest species richness (mean = 23 taxa/sample) and reduced phytoplankton biomass (mean = 1.0 mg L-1); ii) periods II (low waters and rising) without Egeria najas, with lowest influence from the river, lowest depths, turbid waters, highest phytoplankton biomass (mean = 9.8 mg L-1) and species richness (mean = 29 taxa/sample); iii) periods III (high waters and beginning of the second receding) with Egeria najas and high influence from the river, greater depths, clear waters, with intermediate species richness (mean = 26 taxa/sample) and lowest phytoplankton biomass (mean = 0.7 mg L-1). Phytoplankton was composed mainly of nanoplanktonic algae with greatest contributions in the low waters without Egeria najas and was represented by 16 RFG, with reduced variability between the three periods and sites. The functional groups K, P, F, J, H1 and H2 were important in this shallow flood lake governed by natural mechanisms of alternation of clear water regime with reduced phytoplankton biomass to a new state of turbid water dominated by phytoplankton. The variations in the phytoplankton functional groups were related to the physical and chemical regime of the lake and the hydrodynamics of the flood system, which acts as a continuous renewal of the habitat conditions in the different alternative states the lake.
Referências
Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalvez, J. L. M., & Sparovek, G. 2014. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. DOI: 10.1127/0941-2948/2013/0507
Alves, C. P. P. 2011. A dinâmica do fitoplâncton em uma várzea Amazônica: variações sazonais e nictimeral. Várzea do Lado Grande de Curuai, Pará, Brasil. Master thesis. Institute of Biological Sciences of the Federal University of Goiás. p. 92.
Bertani, I., Primicerio, R., & Rossetti, G. 2016. Extreme climatic event triggers a lake regime shift that propagates across multiple trophic levels. Ecosystems, 19(1), 16–31. DOI: 10.1007/s10021-015-9914-5
Bortolini, J. C., Rodrigues, L. C., Jati, S., & Train, S. 2014. Phytoplankton functional and morphological groups as indicators of environmental variability in a lateral channel of the Upper Paraná River floodplain. Acta Limnologica Brasiliensia, 26, 98–108. DOI: 10.1590/S2179-975X2014000100011
Bortolini, J. C. 2016. Functional approach based on morphology as a model of phytoplankton variability in a subtropical floodplain lake: a long-term study. Hydrobiologia, 767(1), 151–163. DOI: 10.1007/s10750-015-2490-z.
Bovo-Scomparin, V. M., & Train, S. 2008. Long-term variability of the phytoplankton community in a isolated floodplain lake of the Ivinhema River State Park, Brazil. Hydrobiologia, 610, 331–344. DOI: 10.1007/s10750-008-9448-3
Brasil, J., & Huszar, V. L. M. 2011. O papel dos traços funcionais na ecologia do fitoplâncton continental. Oecologia Australis, 15(4), 799-834. DOI: 10.4257/oeco.2011.1504.04
Carmouze, J. P. 1994. O metabolismo dos ecossistemas aquáticos. Fundamentos teóricos, métodos de estudo e análises químicas. São Paulo: Edgard Blücher: p. 254.
Cloern, J. E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series, 210, 223–253. DOI: 10.3354/meps210223
Cole, G. A. 1994. Textbook of limnology. Illinois: Waveland Press Inc: p. 440.
Costa, L. S. 2005. Fitoplâncton do estuário do rio Paraíba do Sul: padrões espaciais e temporais. Master thesis. Institute of Biological Sciences of the Federal University of Rio de Janeiro. p. 49.
Devercelli, M. 2006. Phytoplankton of the middle Parana´ River during an anomalous hydrological period: a morphological and functional approach. Hydrobiologia, 563(1), 465–478. DOI: 10.1007/s10750-006-0036-0
Devercelli, M., Domitrovic, Y. Z., Forastier, M., & Zaburlín, N. M. 2014. Phytoplankton of the Paraná River Basin. Advances in Limnology, 65, 39–65. DOI: 10.1127/1612-166X/2014/0065-0033
Domitrovic, I. Z. 2003. Effect of fluctuations in water level on phytoplankton development in three lakes of the Paraná river floodplain (Argentina). Hydrobiologia, 510(1), 175–193. DOI: 10.1023/B:HYDR.0000008643.50105.4b
Gamito, S., Coelho, S., & Pérez-Ruzafa, A. 2019. Phyto-and zooplankton dynamics in two ICOLLs from Southern Portugal. Estuarine, Coastal and Shelf Science, 216(1), 110–117. DOI: 10.1016/j.ecss.2017.11.023
Golterman, H. L., Clymo, R. S., & Ohnstad, M. A. M. 1978. Methods for chemical analysis of freswater. Boston: Blackwell Sci. Publ: p. 213.
Hillebrand, H., Durselen, C. D., Kirschtel, D., Pollingher, U., & Zohary, T. 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35(2), 403–424. DOI: 10.1046/j.1529-8817.1999.3520403.x
Huszar, V. L. M., & Caraco, N. F. 1998. The relationship between phytoplankton composition and physical-chemical variables: a comparison of taxonomic and morphological-functional descriptors in six temperate lakes. Freshwater Biology, 40(4), 679–696. DOI: 10.1046/j.1365-2427.1998.d01-656.x
Huszar, V. L., Kruk, C., & Caraco, N. 2003. Steady-state assemblages of phytoplankton in four temperate lakes (NE USA). Hydrobiologia, 502(1-3), 97–109. DOI: 10.1023/B:HYDR.0000004273.40488.00
Huszar, V. L. M., Caraco, N., Roland, F., & Cole, J. 2006. Nutrient–chlorophyll relationships in tropical–subtropical lakes: Do temperate models fit? Biogeochemistry, 79(1-2), 239–250. DOI: 10.1007/s10533-006-9007-9
Izaguirre, I., Allende, L., Escaray, R., Bustingorry, J., Pérez, G., & Tell, G. 2012. Comparison of morpho-functional phytoplankton classifications in human-impacted shallow lakes with different stable states. Hydrobiologia, 698(1), 203–216. DOI: 10.1007/s10750-012-1069-1
Junk, W., Bayley, P. B., & Sparks, R. G. 1989. The flood pulse concept in river floodplain system. Canadian Special Publication of Fisheries and Aquatic Sciences, 106, 110–127.
Junk, W. J., & Wantzen, K. M. 2006. Flood pulsing and the development and maintenance of biodiversity in floodplains. In: D. P. Batzer & R. R. Sharitz (Eds.), Ecology of Freshwater and Estuarine Wetlands. pp. 407–435. Berkeley: University of California Press.
Junk, W. J., Silva, C. J., Cunha, C. N., & Wantzen, K. M. 2011. The Pantanal: Ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Sofia: Pensoft Publishers: p. 857
Kasten, J. 2003. Inundation and insolation: dynamics of phytoplankton communities in seasonal inundated floodplain waters of the Lower Odra Valley National Park - Northeast Germany. Limnologica, 33(2), 99–111. DOI: 10.1016/S0075-9511(03)80039-7
Kosten, S., Huszar, V. L. M., Mazzeo N., Scheffer, M, Sternberg, L S. L., & Jeppesen, E. 2009. Lake and watershed characteristics rather than climate influence nutrient limitation in shallow lakes. Ecological Applications, 19(7), 1791–1804. DOI: 10.1890/08-0906.
Kruk, C., Mazzeo, N., Lacerot, G., & Reynolds, C. S. 2002. Classification schemes for phytoplankton: a local validation of a functional approach to the analysis of species temporal replacement. Journal Plankton Research, 24(9), 1191–1216. DOI: 10.1093/plankt/24.9.901
Kruk, C., Devercelli, M., Huszar, V. L. M., Hernadez, E., Beaumud, G., Diaz, M., Silva, L. H. S., & Segura, A. M. 2017. Classification of Reynolds phytoplankton functional groups using individual traits and machine learning techniques. Freshwater Biology, 62(10), 1681–1692. DOI: 10.1111/fwb.12968
Lobo, M. T. P. S., Nogueira, I. S., Sgarbi, L. F., Krausd, C. N., Bomfim, E. O., Garnierf, J., Marques, D. M., & Bonnet, M. P. 2018. Morphology-based functional groups as the best tool to characterize shallow lake-dwelling phytoplankton on an Amazonian floodplain. Ecological Indicators, 95(1), 579–588. DOI: 10.1016/j.ecolind.2018.07.038
Loverde-Oliveira, S. M. 2005. Implicações da complexidade hidrológica sobre padrões limnológicos na lagoa do Coqueiro, Pantanal de Mato Grosso: alternância de estados estáveis. Doctoral thesis. Department of Ecology of the Federal University of Rio de Janeiro. p. 140.
Loverde-Oliveira, S. M., & Huszar, V. L. M. 2007. Phytoplankton ecological responses to the flood pulse in a Pantanal lake Central Brazil. Acta Limnologica Brasiliensia, 19(2), 117–130.
Loverde-Oliveira, S. M., Huszar, V. L. M., Mazzeo, N., & Scheffer, M. 2009. Hydrology-driven regime shifts in a shallow tropical lake. Ecosystems, 12(5), 807–819. DOI: 10.1007/s10021-009-9258-0
Loverde-Oliveira, S. M., & Huszar, V. L. M. 2010. Efeitos do pulso de inundação sobre a qualidade da água da lagoa do Coqueiro, Pantanal de Poconé, Mato Grosso. In: J. W. M. C. Santos (Ed.), Produção do espaço e transformações socioambientais das paisagens do Mato Grosso. pp.82–102. Cuiabá: Edufmt.
Machado, K. B., Teresa, F. B., Vieira, L. C. G., Huszar, V. L. M., & Nabout, J. 2016. Comparing the effects of landscape and local environmental variables on taxonomic and functional composition of phytoplankton communities. Journal of Plankton Research, 38(5), 1334–1346. DOI: 10.1093/plankt/fbw062
Mackereth, F. J. H., Heron, J., & Talling, J. F. 1978. Water analysis: some revised methods for limnologists. Scientific Publications Freshwater Biological Association, 36(2), 1–121. DOI: 10.1086/411247
Nabout, J. C., Nogueira, I. S., & Oliveira, L. G. 2006. Phytoplankton community of floodplain lakes of the Araguaia River, Brazil, in the rainy and dry seasons. Journal of Plankton Research, 28(2), 181–193. DOI: 10.1093/plankt/fbi111
Nabout, J. C., & Nogueira, I. S. 2007. Spatial and temporal dynamics of phytoplankton functional group in a blocked valley (Brazil). Acta Limnologica Brasiliensia, 19(3), 305–314. DOI: 10.4322/actalb.02203008
Nusch, E. A., & Palme, G. 1975. Biologische methoden fur die praxis des Gewasseruntersuchung. Wasser Abwasser, 116, 562–565.
Oksanen, J., Blanchet F. G., Michael F., Kindt, R., Legendre, P., McGlinn, D., Minchin P. R., O'Hara, R. B., Simpson G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner H. 201,9. Vegan: Community Ecology Package. R package version 2.5-5. https://CRAN.Rproject.org/package=vegan
O’Farrell, I., Izaguirre, I., Chaparro, G., Unrein, F., Sinistro, R., Pizarro, H., Rodríguez, P. L., Tezanos-Pinto, P., Lombardo, R., & Tell, G. 2011. Water level variation as the main driver of the alternation between a free-floating plant and a phytoplankton dominated state: a long-term study in a floodplain lake. Aquatic Science, 73(2), 275–287. DOI: 10.1007/s00027-010-0175-2
Oliveira, M. D., & Calheiros, D. 2000. Flood pulse influence on phytoplankton communities of the south Pantanal, Brasil. Hydrobiologia, 427(1), 101–112. DOI: 10.1023/A:1003951930525
Padisák, J., Crossetti, L. O., & Naselli-Flores, L., 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia, 621(1), 1–19. DOI: 10.1007/s10750-008-9645-0
Philippart, C. J. M., Cadée, G. C., Van Raaphorst, W., & Riegman, R. 2000. Long-term phytoplankton-nutrient interactions in a shallow coastal sea: algal community structure, nutrient budgets, and denitrification potential. Limnology and Oceanography, 45(1), 131–144. DOI: 10.4319/lo.2000.45.1.0131
Pielou, E. C. 1966. The measurement of diversity in different types of biological collections. Journal Theorical Biology, 13, 131–144. DOI: 10.1016/0022-5193(66)90013-0
Redfield, A. C., Ketchum B. H., & Richards, F. A. 1963. The influence of organisms on the composition of sea-water. In: M. N. Hill (Ed.), The sea: Ideas and observations on progress in the study of the seas. pp. 26-77. Nova Jersey: Wiley Interscience.
R Core Team. 2018. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Reynolds, C. S. 1988. The concept of ecological succession applied to seasonal periodicity of freshwater phytoplankton. Internationale Vereinigung für Theoretische und Angewandte Limnologie, 23(2), 683–691. DOI: 10.1080/03680770.1987.11899692
Reynolds, C. S. 1997. Vegetation processes in the pelagic: a model for ecosystem theory. Germany: Excellence in Ecology: p. 371.
Reynolds, C. S., Huszar, V. L. M., Kruk, C., Naselli-Flores, L., & Melo, S. 2002. Towards a functional classification of the freshwater phytoplankton. Journal Plankton Research, 24(5), 417–428. DOI: 10.1093/plankt/24.5.417
Scheffer, M., Hosper, S. H., Meijer, M. L., Moss, B., & Jeppesen, E. 1993. Alternative equilibria in shallow lakes. Trends Ecology and Evolution, 8(8), 275–280.DOI:10.1016/0169-5347(93)90254-M
Scheffer, M., & Jeppsen, E. 2003. Catastrophic regime shifts in ecosystems: linking. theory to observation. Trends in Ecology and Evolution, 18(12), 648–656. DOI: 10.1016/j.tree.2003.09.002
Scheffer, M., & Jeppsen, E. 2007. Regime shifts in shallow lakes. Ecosystems, 10(1), 1–3. DOI: 10.1007/s10021-006-9002-y
Schemel, L. E., Sommer, T. R., Muller-Solger, A. B., & Harrell, W. C. 2004. Hydrologic variability, water chemistry, and phytoplankton biomass in a large floodplain of the Sacramento river, CA, USA. Hydrobiologia, 513, 129–139. DOI: 10.1023/B:hydr.0000018178.85404.1c
Shannon, C. E., & Weaver, W. 1963. The mathematical theory of communication. Illinois: University of Illinois Press, Urbana: p. 125.
Silva, C. J., & Figueiredo, D. M. 1999. Variação limnológica das baías Chacororé e de Sinhá Mariana, Pantanal Mato-grossense, Mato Grosso (MT). Revista Mato-Grossense de Geografia, 3/4, 57–75.
Sommer, U. 1988. Growth and survival strategies of planktonic diatoms. In: S. D. Sandgreen (Ed.), Growth and reproductive strategies of freshwater phytoplanktonic. pp. 227-260. Cambridge: Cambridge University Press.
Sommer, U. 1989. Toward a Darwinian ecology of plankton. In: U. Sommer (Ed.), Plankton ecology: Succession in plankton communities. pp. 1-8. Berlin: Springer-Verlag.
Southwood, T. R. E. 1977. Habitat, the templet for ecological strategies? Journal Animal Ecology, 46(2), 337–365. DOI: 10.2307/3817
Teixeira, C., Tundisi, J. C., & Kutner, M. B. 1965. Plankton studies in a mangrove system II: The standing-stock and some ecological factors. Boletim do Instituto Oceanografico, 24, 23–41. DOI: 10.1590/S0373-55241965000100002
Ter Braak, C. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67(5), 1167–1179. DOI: 10.2307/1938672
Tezanos-Pinto. P., & O’Farrell, I. 2014. Regime shifts between free-floating plants and phytoplankton: a review. Hydrobiologia, 740(1), 13–24. DOI: 10.1007/s10750-014-1943-0
Tezanos-Pinto. P., Lombardo, R., O’Farrell, I., & Izaguirre, I. 2015. Drivers shaping phytoplankton diversity and composition in a humid Pampean floodplain lake (Natural Reserve). Hydrobiologia, 752(1), 77–89. DOI: 10.1007/s10750-014-2008-0
Townsend, S. A. 2006. Hydraulic phases, persistent stratification, and phytoplankton in a tropical floodplain lake (Mary River, Northern Australia). Hydrobiologia, 556(1), 163–179. DOI: 10.1007/s10750-005-0885-y
Uehlinger, V. 1964. Étude statistique des méthodes dénobrement planctonique. Archives Science, 17(2), 121-223. DOI: 10.1002/iroh.19650500319
Utermöhl, H. 1958. Zur VervollKomnung der quantitativen phytoplankton methodik. Internationale Vereinigung für Theoretische und Angewandte Limnologie: Mitteilungen, 9(1), 1–38. DOI: 10.1080/05384680.1958.11904091
Zanco, B. F., Pineda, A., Bortolini, J. C., Jati, S., & Rodrigues, L. C. 2017. Phytoplankton functional groups indicators of environmental conditions in floodplain rivers and lakes of the Paraná Basin. Acta Limnologica Brasiliensia, 29, e119. DOI: 10.1590/S2179-975X8117
Arquivos adicionais
- Declaraçao dos autores (English)
- Declaraçao Traduçao (English)
- Figure1 (English)
- Figure2 (English)
- Figure3 (English)
- Figure4 (English)
- Figure5 (English)
- Tabela 1 (English)
- Tabela 2 (English)
- Revisores (English)
- Phytoplankton functional groups driven by alternative states in a tropical floodplain lake (Pantanal, Brazil) (English)
- manuscrito revisado (English)
- carta resposta (English)
- Figure1 (English)
- Figure2 (English)
- Figure3 (English)
- Figure4 (English)
- Table1 (English)
- Material suplementar (English)