HUMAN IMPACTS ON AQUATIC ECOSYSTEMS FROM THE LENS OF ECOLOGICAL STOICHIOMETRY
Palavras-chave:
biogeochemical cycles, elements, nutrient stoichiometry, pollutionResumo
Aquatic ecosystems are under different anthropogenic pressures, such as climate change, eutrophication, chemical pollution, overfishing, and introducing exotic species. Human activities have accelerated biogeochemical cycles forcing organisms and ecosystems to adapt. Most ecological stoichiometry studies are focused on carbon, nitrogen, phosphorus, and their relative proportions. Still, the possibilities for investigations using other elements to better understand the impacts of human pressures on aquatic ecosystems are vast. Therefore, here we explore how different anthropogenic activities influence ecosystem balance in terms of nutrient composition and stoichiometry. We conclude that human interventions have affected the functioning of aquatic ecosystems in terms of energy flow due to stoichiometric imbalances. We also conclude that the interplay between macro and micronutrient stoichiometry might raise important axioms to predict and understand human impacts on the functioning of aquatic ecosystems.
Referências
Arthington, A. H., Dulvy, N. K., Gladstone, W., & Winfield, I. J. 2016. Fish conservation in freshwater and marine realms: status, threats and management. Aquatic Conservation: Marine and Freshwater Ecosystems, 26, 838–857. DOI: 10.1002/aqc.2712
Attayde, J. L., Okun, N., Brasil, J., Menezes, R., & Mesquita, P. 2007. Os impactos da introdução da tilápia do nilo, Oreochromis niloticus, sobre a estrutura trófica dos ecossistemas aquáticos do bioma caatinga. Oecologia Brasiliensis, 11(03), 450–461. DOI: 10.4257/oeco.2007.1103.13
Avnimelech, Y. 2012. Biofloc Technology – A Practical Guide Book, 2d Edition. The World Aquaculture Society, Baton Rouge, Louisiana, United States. p. 272.
Behrenfeld, M. J., & Kolber, Z. S. 1999. Widespread iron limitation of phytoplankton in the South Pacific Oceanic. Science, 283(5403), 840–843. DOI: 10.1126/science.283.5403.840
Berggren, M., Laudon, H., Jonsson, A., & Jansson, M. 2010. Nutrient constraints on metabolism affect the temperature regulation of aquatic bacterial growth efficiency. Microbial ecology, 60(4), 894–902. DOI: 10.1007/s00248-010-9751-1.
Boyd, C. E. 2003. Guidelines for aquaculture effluent management at the farm-level. Aquaculture, 226, 101–112. Elsevier. DOI: 10.1016/S0044-8486(03)00471-X
Bradshaw, C., Kautsky, U., & Kumblad, L. 2012. Ecological Stoichiometry and Multi-element Transfer in a Coastal Ecosystem. Ecosystems, 15(4), 591–603. DOI: 10.1007/s10021-012-9531-5
Brand, L. E., Sunda, W. G., & Guillard, R. R. 1986. Reduction of marine phytoplankton reproduction rates by copper and cadmium. Journal of Experimental Marine Biology and Ecology, 96(3), 225–250. DOI: 10.1016/0022-0981(86)90205-4.
Brito, S. S. B., Cunha, A. P. M., Cunningham, C. C., Alvalá, R. C., Marengo, J. A., & Carvalho, M. A. 2018. Frequency, duration and severity of drought in the Semiarid Northeast Brazil region. International Journal of Climatology, 38(2), 517–529. DOI: 10.1002/joc.5225
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. 2004. Toward a metabolic theory of ecology. Ecology, 85, 1771–1789. DOI: 10.1890/03-9000
Browning, T. J., Achterberg, E. P., Engel, A., & Mawji, E. 2021. Manganese co-limitation of phytoplankton growth and major nutrient drawdown in the Southern Ocean. Nature communications, 12(1), 1-9. DOI: 10.1038/s41467-021-21122-6
Burgin, A. J., Yang, W. H., Hamilton, S. K., & Silver, W. L. 2011. Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems. Frontiers in Ecology and the Environment, 9(1), 44–52. DOI: 10.1890/090227
Chen, G., Shi, H., Tao, J., Chen, L., Liu, Y., Lei, G., Liu, X., & Smol, J. P. 2015. Industrial arsenic contamination causes catastrophic changes in freshwater ecosystems. Scientific Reports, 5(1), 1-7. DOI: 10.1038/srep17419.
Costa, M. R., Menezes, R. F., Sarmento, H., Attayde, J. L., Sternberg, L. da S.L., & Becker, V. 2019. Extreme drought favors potential mixotrophic organisms in tropical semi-arid reservoirs. Hydrobiologia, 831(1), 43–54. DOI: 10.1007/s10750-018-3583-2
Cotner Jr, J. B., & Heath, R. T. 1990. Iron redox effects on photosensitive phosphorus release from dissolved humic materials. Limnology and Oceanography, 35(5), 1175–1181. DOI: 10.4319/lo.1990.35.5.1175.
Cotner Jr, J. B., & Wetzel, R. G. 1992. Uptake of dissolved inorganic and organic phosphorus compounds by phytoplankton and bacterioplankton. Limnology and Oceanography, 37(2), 232–243. DOI: 10.4319/lo.1992.37.2.0232
Cotner, J. B. 2019. How increased atmospheric carbon dioxide and 'The Law of the Minimum'are contributing to environmental obesity. Acta Limnologica Brasiliensia, 31. DOI: 10.1590/S2179-975X6519
Cucherousset, J., & Olden, J. D. 2011. Ecological impacts of nonnative freshwater fishes. Fisheries, 36(5), 215–230. DOI: 10.1080/03632415.2011.574578
Del Giorgio, P.A. and Cole, J.J., 1998. Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics, 29(1), 503–541.
Dodds, W. K., & Cole, J. J. 2007. Expanding the concept of trophic state in aquatic ecosystems: It's not just the autotrophs. Aquatic Sciences, 69(4), 427–439 DOI: 10.1007/s00027-007-0922-1
Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., Naiman, R. K., Prieur-Richard, A., Soto, D., Stiassny, M. L., J., & Sullivan, C. A. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological reviews, 81(2), 163–182. DOI: 10.1017/S1464793105006950
Elser, J. J., Dobberfuhl, D. R., MacKay, N. A., & Schampel, J. H. 1996. Organism size, life history and N:P stoichiometry. BioScience, 46(9), 674–685. DOI: 10.2307/1312897
Elser, J. J., Sterner, R. W., Gorokhova, E., Fagan, W. F., Markow, T. A., Cotner, J. B., Harrison, J. F., Hobbie, S. E., Odell, G. M., & Weider, L. W. 2000. Biological stoichiometry from genes to ecosystems. Ecology Letters, 3(6), 540–550. DOI: 10.1046/j.1461-0248.2000.00185.x
Elser, J.J. & Urabe, J. 1999. The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology, 80, 735–751. DOI: 10.1890/0012-9658(1999)080[0735:TSOCDN]2.0.CO;2
Elton, C. S. 2001. Animal ecology. University of Chicago Press. p. 296.
Emerenciano, M., Gaxiola, G., & Cuzon, G. 2013. Biofloc Technology (BFT): A Review for Aquaculture Application and Animal Food Industry. In: Matovic, M.D. (Ed.). Biomass Now – Cultivation and Utilization. pp. 301–328. InTechOpen. DOI: 10.5772/53902
FAO. 2020. The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. p. 244.
Figueredo, C. C., & Giani, A. 2005. Ecological interactions between Nile tilapia (Oreochromis niloticus, L.) and the phytoplanktonic community of the Furnas Reservoir (Brazil). Freshwater Biology, 50(8), 1391–1403. DOI: 10.1111/j.1365-2427.2005.01407.x
Gallardo, B., Clavero, M., Sánchez, M. I., & Vilà, M. 2016. Global ecological impacts of invasive species in aquatic ecosystems. Global Change Biology, 22, 151–163. DOI: 10.1111/gcb.13004
Gerbersdorf, S. U., Hollert, H., Brinkmann, M., Wieprecht, S., Schüttrumpf, H., & Manz, W. 2011. Anthropogenic pollutants affect ecosystem services of freshwater sediments: the need for a "triad plus x" approach. Journal of Soils and Sediments, 11(6), 1099–1114. DOI: 10.1007/s11368-011-0373-0
Gesteira, C. T. V., & Paiva, M. P. 2003. Impactos ambientais dos cultivos de camarões marinhos no nordeste do brasil. Arquivos de ciência do mar, 36, 23–28. DOI: 10.32360/acmar.v36i1-2.6487.
Glibert, P. M. 2012. Ecological stoichiometry and its implications for aquatic ecosystem sustainability. Current Opinion in Environmental Sustainability, 4(3), 272–277. DOI: 10.1016/j.cosust.2012.05.009
Glibert, P. M., & Burkholder, J. A. M. 2011. Harmful algal blooms and eutrophication: "strategies" for nutrient uptake and growth outside the Redfield comfort zone. Chinese Journal of Oceanology and Limnology, 29, 724–738. DOI: 10.1007/s00343-011-0502-z
Godwin, C. M., & Cotner, J. B. 2015. Stoichiometric flexibility in diverse aquatic heterotrophic bacteria is coupled to differences in cellular phosphorus quotas. Frontiers in Microbiology, 6(FEB), 159. DOI: 10.3389/fmicb.2015.00159
Ibrahim, A. M., David, S., Bruno, G., Mark, C., & Mohammed, A. M. 2018. Decline in oyster populations in traditional fishing grounds; is habitat damage by static fishing gear a contributory factor in ecosystem degradation?. Journal of Sea Research, 140, 40–51. DOI: 10.1016/j.seares.2018.07.006
Granger, J., & Ward, B. B. 2003. Accumulation of nitrogen oxides in copper-limited cultures of denitrifying bacteria. Limnology and Oceanography, 48(1), 313–318. DOI: 10.4319/lo.2003.48.1.0313
Jackson, J. B., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., & Warner, R. R. 2001. Historical overfishing and the recent collapse of coastal ecosystems. science, 293(5530), 629–637. DOI: 10.1126/science.1059199
Jeyasingh, P. D., Goos, J. M., Thompson, S. K., Godwin, C. M., & Cotner, J. B. 2017. Ecological stoichiometry beyond Redfield: An ionomic perspective on elemental homeostasis. Frontiers in Microbiology, 8. DOI: 10.3389/fmicb.2017.00722
Karimi, R., & Folt, C. L. 2006. Beyond macronutrients: Element variability and multielement stoichiometry in freshwater invertebrates. Ecology Letters, 9(12), 1273–1283. DOI: 10.1111/j.1461-0248.2006. 00979.x
Kooijman, M., Van Amerongen, H., Traub, P., Van Grondelle, R., & Bloemendal, M. 1995. The assembly state of the intermediate filament proteins desmin and glial fibrillary acidic protein at low ionic strength. FEBS Letters, 358(2), 185–188. DOI: 10.1016/0014-5793(94)01419-2
Lane, T. W., & Morel, F. M. M. 2000. A biological function for cadmium in marine diatoms. Proceedings of the National Academy of Sciences of the United States of America, 97(9), 4627–4631. DOI: 10.1073/pnas.090091397
Liengaard, L., Nielsen, L. P., Revsbech, N. P., Priemé, A., Elberling, B., Enrich-Prast, A., & Kühl, M. 2013. Extreme emission of N2O from tropical wetland soil (Pantanal, South America). Frontiers in microbiology, 3, 433. DOI: 10.3389/fmicb.2012.00433
Lindeman, R. L. 1942. The Trophic-Dynamic Aspect of Ecology. Ecology, 23(4), 399–417. DOI: 10.2307/1930126
Maranger, R., Jones, S. E., & Cotner, J. B. 2018. Stoichiometry of carbon, nitrogen, and phosphorus through the freshwater pipe. Limnology and Oceanography Letters, 3(3), 89–101. DOI: 10.1002/lol2.10080
Marengo, J. A. 2010. Vulnerabilidade, impactos e adaptação à mudança do clima no semi-árido do Brasil. Parcerias estratégicas, 13(27), 149–176.
Marengo JA., Espinoza JC., Alves LM., Ronchail J., Lavado-Casimiro W, Ramos AM., Moli-na-Carpio J., Correa K., Baez J., Salinas R. 2020 Regional Climates - Central South America. In: Blunden, J. & T. Boyer (Eds.). State of the Climate in 2019. Bulletin of the American Meteorological Society, 101(8), S321–S420, DOI: 10.1175/2020BAMSStateoftheClimate_Chapter7.1
Marotta, H., Pinho, L., Gudasz, C., Bastviken, D., Tranvik, L. J., & Enrich-Prast, A. 2014. Greenhouse gas production in low-latitude lake sediments responds strongly to warm-ing. Nature Climate Change, 4(6), 467–470. DOI: 10.1038/NCLIMATE2222
Martin, J. H., & Fitzwater, S. E. 1988. Iron deficiency limits phytoplankton growth in the north-east pacific subarctic. Nature, 331(6154), 341–343. DOI: 10.1038/331341a0
Martin, J. H., Broenkow, W. W., Fitzwater, S. E., & Gordon, R. M. 1990a. Yes, it does: A reply to the comment by Banse. Limnology and Oceanography, 35(3), 775–777. DOI: 10.4319/lo.1990.35.3.0775
Martin, J. H., Fitzwater, S. E., & Gordon, R. M. 1990b. Iron deficiency limits phytoplankton growth in Antarctic waters. Global Biogeochemical Cycles, 4(1), 5–12. DOI: 10.1029/GB004i001p00005
Martin, J. H., Gordon, M., & Fitzwater, S. E. 1991. The case for iron. Limnology and Oceanography, 36(8), 1793–1802. DOI: 10.4319/lo.1991.36.8.1793
McCrackin, M. L., Harrison, J. A., & Compton, J. E. 2013. A comparison of NEWS and SPARROW models to understand sources of nitrogen delivered to US coastal areas. Biogeochemistry, 114(1–3), 281–297
Medek, D. E., Schwartz, J., & Myers, S. S. 2017. Estimated effects of future atmospheric CO 2 concentrations on protein intake and the risk of protein deficiency by country and region. Environmental Health Perspectives, 125(8), 087002. DOI: 10.1289/EHP41
Mills, M. M., Ridame, C., Davey, M., La Roche, J., & Geider, R. J. 2004. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature, 429(6989), 292–294. DOI: 10.1038/nature02550
Möllmann, C., & Diekmann, R. 2012. Marine ecosystem regime shifts induced by climate and overfishing: a review for the Northern Hemisphere. Advances in ecological research, 47, 303–347. DOI: 10.1016/B978-0-12-398315-2.00004-1
Moy, F. E., & Christie, H. 2012. Large-scale shift from sugar kelp (Saccharina latissima) to ephemeral algae along the south and west coast of Norway. Marine Biology Research, 8(4), 309–321. DOI:10.1080/17451000.2011.637561
Myers, S. S., Zanobetti, A., Kloog, I., Huybers, P., Leakey, A. D., Bloom, A. J., E. Carlisle, L. H. Dietterich, G. Fitzgerald, T. Hasegawa, N. M. Holbrook, R. L. Nelson, M. J. Ottman, V. Raboy, H. Sakai, K. A. Sartor, J. Schwartz, S. Seneweera, M. Tausz, & Y. Usu. 2014. Increasing CO 2 threatens human nutrition. Nature, 510(7503), 139–142. DOI: 10.1038/nature1317
Neumann-Leitão, S., Melo, P. A., Schwamborn, R., Diaz, X. F., Figueiredo, L. G., Silva, A. P., & Thompson, F. 2018. Zooplankton from a reef system under the influence of the Amazon River plume. Frontiers in microbiology, 9. DOI: 10.3389/fmicb.2018.00355
Nobre, R. L., Caliman, A., Guariento, R. D., Bozelli, R. L., & Carneiro, L. S. 2019. Effects of the introduction of an omnivorous fish on the biodiversity and functioning of an upland Amazonian lake. Acta Amazonica, 49, 221–231. DOI:10.1590/1809-4392201804131
Officer, C. B., Smayda, T. J., & Mann, R. 1982. Benthic filter feeding: a natural eutrophication control. Marine Ecology – Progress Series, 9, 203–210.
Páez-Osuna, F. 2001. The environmental impact of shrimp aquaculture: A global perspective. Environmental Pollution, 112(2), 229–231. DOI: 10.1016/S02697491(00)00111-1
Peixoto, R. B., Marotta, H., & Enrich-Prast, A. 2013. Experimental evidence of nitrogen con-trol on pCO2 in phosphorus-enriched humic and clear coastal lagoon waters. Frontiers in microbiology, 4, 11. DOI: 10.3389/fmicb.2013.00011
Phillips, K. N., Godwin, C. M., & Cotner, J. B. 2017. The Effects of Nutrient Imbalances and Temperature on the Biomass Stoichiometry of Freshwater Bacteria. Frontiers of Micro-biology, 8, 1692. DOI: 10.3389/fmicb.2017.01692
Pimentel, D., McNair, S., Janecka, J., Wightman, J., Simmonds, C., O'Connell, C., Wong, E., Russel, L., Zern, J., Aquino, T., & Tsomondo T. 2001. Economic and environmental threats of alien plant, animal, and microbe invasions. Agriculture, Ecosystems and Environment, 84, 1–20.
Pimentel, O. A. L. F., Amado, A. M., & They, N. H. 2020. Higher nitrogen and phosphorus immobilization in bioflocs is associated with higher temperature and increased suspended solids in shrimp farming with biofloc technology. Aquaculture Research, 51(9), 3888–3899. DOI: 10.1111/are.14737
Price, N. M., & Morel, F. M. M. 1991. Colimitation of phytoplankton growth by nickel and nitrogen. Limnology and Oceanography, 36(6), 1071–1077. DOI: 10.4319/lo.1991.36.6.1071
Quadra, G. R., Teixeira, J. R. P. V. A., Barros, N., Roland, F., & Amado, A. M. 2019. Water pollution: one of the main Limnology challenges in the Anthropocene. Acta Limnologica Brasiliensia, 31. DOI: 10.1590/S2179-975X5118
Quigg, A., Finkel, Z. V., Irwin, A. J., Rosenthal, Y., Ho, T. Y., Reinfelder, J. R., Schofield, O., Morel, F. M. M., & Falkowski, P. G. 2003. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature, 425(6955), 291–294. DOI: 10.1038/nature01953
Rajkumar, M., Pandey, P. K., Aravind, R., Vennila, A., Bharti, V., & Purushothaman, C. S. 2016. Effect of different biofloc system on water quality, biofloc composition and growth performance in Litopenaeus vannamei (Boone, 1931). Aquaculture Research, 47(11), 3432–3444. DOI: 10.1111/are.12792
Rangel, L. M., Silva, L. H. S., Faassen, E. J., Lürling, M., & Ger, K. A. 2020. Copepod prey selection and grazing efficiency mediated by chemical and morphological defensive traits of cyanobacteria. Toxins, 12(7), 465. DOI: 10.3390/toxins12070465
Redfield, A. C. 1934. On the proportions of organic derivatives in sea water and their relation to the composition of plankton. James Johnstone memorial volume, University Press of Liverpool, 176–192.
Redfield, A. C. 1958. The biological control of chemical factors in the environment. American Scientist, 205–221
Riedel, T., Zak, D., Biester, H., & Dittmar, T. 2013. Iron traps terrestrially derived dissolved organic matter at redox interfaces. Proceedings of the National Academy of Sciences, 110(25), 10101–10105. DOI: 10.1073/pnas.1221487110
Roland, F., Huszar, V. L. M., Farjalla, V. F., Enrich-Prast, A., Amado, A. M., & Ometto, J. P. H. B. 2012. Climate change in Brazil: perspective on the biogeochemistry of inland waters. Brazilian Journal of Biology, 72(3), 709–722. DOI: 10.1590/S1519-69842012000400009
Romano, N., Dauda, A. B., Ikhsan, N., Karim, M., & Kamarudin, M. S. 2018. Fermenting rice bran as a carbon source for biofloc technology improved the water quality, growth, feeding efficiencies, and biochemical composition of African catfish Clarias gariepinus juveniles. Aquaculture Research, 49(12), 3691–3701. DOI: 10.1111/are.13837
Samocha, T.M. 2019. Sustainable Biofloc Systems for Marine Shrimp. The Texas A&M AgriLife Research Experience. Baton Rouge: The World Aquaculture Society. p. 463.
Sardans, J., Rivas-Ubach, A., & Peñuelas, J. 2012. The C: N: P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspectives in Plant Ecology, Evolution and Systematics, 14(1), 33–47. DOI: 10.1016/j.ppees.2011.08.002
Schuler, M. S., & Relyea, R. A. 2018. A review of the combined threats of road salts and heavy metals to freshwater systems. BioScience, 68(5), 327–335. DOI: 10.1093/biosci/biy018
Scofield, V., Jacques, S., Guimarães, J. R., & Farjalla, V. F. 2015. Potential changes in bacterial metabolism associated with increased water temperature and nutrient inputs in tropical humic lagoons. Frontiers in Microbiology, 6, 310. DOI: 10.3389/fmicb.2015.003
Sitters, J., Atkinson, C. L., Guelzow, N., Kelly, P., & Sullivan, L. L. 2015. Spatial stoichiometry: Cross-ecosystem material flows and their impact on recipient ecosystems and organisms. Oikos, 124(7), 920–930. DOI: 10.1111/oik.02392
Smith, S. H. 1968. Species Succession and Fishery Exploitation in the Great Lakes. Journal of the Fisheries Research Board of Canada, 25(4), 667–693. DOI: 10.1139/f68-063
Smith, V. H., & Schindler, D. W. 2009. Eutrophication science: where do we go from here?. Trends in ecology & evolution, 24(4), 201–207. DOI: 10.1016/j.tree.2008.11.009
Somes, C. J., Schmittner, A., & Altabet, M. A. 2010. Nitrogen isotope simulations show the importance of atmospheric iron deposition for nitrogen fixation across the Pacific Ocean. Geophysical Research Letters, 37, L23605. DOI: 10.1029/2010GL044537
Starling, F., Lazzaro, X., Cavalcanti, C., & Moreira, R. 2002. Contribution of omnivorous tilapia to eutrophication of a shallow tropical reservoir: evidence from a fish kill. Freshwater Biology, 47(12), 2443–2452. DOI: 10.1046/j.1365-2427.2002.01013.x
Sterner, R. W., Clasen, J., Lampert, W., & Weisse, T. 1998. Carbon: phosphorus stoichiometry and food chain production. Ecology Letters, 1(3), 146–150. DOI: 10.1046/j.1461-0248.1998.00030.x
Sterner, R. W., Elser, J. J. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. United States of America: Princeton University Press, p. 464.
Sunda, W. 2012. Feedback interactions between trace metal nutrients and phytoplankton in the ocean. Frontiers in microbiology, 3, 204. DOI: 0.3389/fmicb.2012.00204.
They, N. H., Amado, A. M., & Cotner, J. B. 2017. Redfield Ratios in Inland Waters: Higher Biological Control of C:N:P Ratios in Tropical Semi-arid High Water Residence Time Lakes. Frontiers in Microbiology, 8, 1505. DOI: 10.3389/fmicb.2017.01505
Tortell, P. D., Maldonado, M. T. & Price, N. M. 1996. The role of heterotrophic bacteria in iron-limited ocean ecosystems. Nature, 383(6598), 330. DOI: 10.1038/383330a0
Vicente, I. S., & Fonseca-Alves, C. E. 2013. Impact of introduced Nile tilapia (Oreochromis niloticus) on non-native aquatic ecosystems. Pakistan Journal of Biological Sciences: PJBS, 16(3), 121–126. DOI: 10.3923/pjbs.2013.121.126
Vinçon-Leite, B. and Casenave, C., 2019. Modelling eutrophication in lake ecosystems: a review. Science of the Total Environment, 651, 2985–3001.
Walsh, J. R., Carpenter, S. R. & Vander Zanden, M. J. 2016. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proceedings of the National Academy of Sciences, 113(15), 4081–4085
Welti, N., Striebel, M., Ulseth, A. J., Cross, W. F., Devilbiss, S., Gliber, T. P. M., Guo, L., Hirst, A. G., Hood, J., Kominoski, J. S., MacneilL, K. L., Mehring, A. S., Welter, J. R. and Hillebrand, H. 2017. Bridging Food Webs, Ecosystem Metabolism, and Biogeochemistry Using Ecological Stoichiometry Theory. Frontiers in Microbiology, 8. DOI: 10.3389/fmicb.2017.01298
Xu, J., Ho, A. Y., Yin, K., Yuan, X., Anderson, D. M., Lee, J. H. & Harrison, P. J. 2008. Temporal and spatial variations in nutrient stoichiometry and regulation of phytoplankton biomass in Hong Kong waters: influence of the Pearl River outflow and sewage inputs. Marine pollution bulletin, 57(6-12), 335–348. DOI: 10.1016/j.marpolbul.2008.01.020
Yang, J., Holbach, A., Wilhelms, A., Krieg, J., Qin, Y., Zheng, B., Zou, H., Qin, B., Zhu, G., Wu, T. and Norra, S. 2020. Identifying spatio-temporal dynamics of trace metals in shallow eutrophic lakes on the basis of a case study in Lake Taihu, China. Environmental Pollution, 264, 114802. DOI: 10.1016/j.envpol.2020.114802
Zaneveld, J. R., Burkepile, D. E., Shantz, A. A., Pritchard, C. E., McMinds, R., Payet, J. P., Welsh, R., Correa, A. M. S., Lemoine, N. P., Rosales, S., Fuchs, C., Maynard, J. A., & Thurber, R. V. 2016. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nature Communications, 7(1), 1–12. DOI: 10.1038/ncomms11833