Uso de Redes Neurais para a Predição de Diagnóstico de AVE: Uma Revisão Sistemática
DOI:
https://doi.org/10.46979/rbn.v58i3.55471Palabras clave:
NeurologiaResumen
Fundamentos: O Acidente Vascular Encefálico (AVE) é uma síndrome de déficit neurológico agudo atribuído à lesão vascular do Sistema Nervoso (SN). As técnicas de Inteligência Artificial (IA) na Medicina — como algoritmos de Redes Neurais Artificiais (RNAs) — têm ajudado na tomada de decisões clínicas voltadas para essa condição. Objetivo: o objetivo desta revisão será avaliar como as redes neurais artificiais estão sendo utilizadas para a predição de diagnóstico de AVE. Métodos: Trata-se de uma revisão sistemática de artigos indexados nas bases de dados PubMed, BVS, SciELO, Cochrane e SpringerLink, entre janeiro e fevereiro de 2022. Os critérios de inclusão e filtros para esse trabalho foram: artigos relacionados ao tema, estudos randomizados, coorte e ensaios clínicos, trabalhos em humanos, realizados nos últimos 5 anos, apenas nos idiomas Português, Inglês e Espanhol e com texto completo disponível gratuitamente. Os parâmetros de exclusão foram: artigos duplicados, fuga ao tema, artigos de revisão e trabalhos que não preenchiam todos os critérios de inclusão. Resultados: As RNAs estão sendo utilizadas, principalmente, para avaliação de áreas de lesões isquêmicas e hemorrágicas por métodos de segmentação e os exames mais utilizados para a modelagem dos programas têm sido Ressonância Magnética (RM) e Tomografia Computadorizada (TC). Além da TC e RM, a angiorressonância e angiotomografia também estão sendo utilizadas para o modelamento do algoritmo e são úteis por apresentarem maior sensibilidade para detecção de infartos. Conclusão: Algoritmos de segmentação e classificação aplicados nas RNAs fazem parte da medicina personalizada e servem de base para médicos na prática clínica.Descargas
Publicado
2022-11-11
Número
Sección
Artigos