Surface modeling as a tool for constructing pseudo ternary diagrams
DOI:
https://doi.org/10.55747/bjedis.v1i2.48370Keywords:
Microemulsions, Phase Diagrams, Mathematical ModelingAbstract
Microemulsions have been developed and evaluated for application in various fields. For their development, ternary phase diagrams are initially constructed, obtained by investigating mixtures of the aqueous and oil phases and a surfactant, to determine the regions composed of liquid microemulsions. However, the construction of these diagrams requires many steps, so simplification of this method can be useful for the formulation and application of these microemulsified systems. Therefore, this article proposes a method to obtain these diagrams employing mathematical modeling, by testing systems composed of kerosene (as oil phase), a nonionic surfactant based on ethoxylated nonylphenol (NP80), and salt water. The study aimed to ascertain which models (linear, quadratic or special cubic) were able to describe the empirical observations, i.e., the ternary phase diagram containing 99 points. The results obtained showed that a quadratic model with a smaller sample (31 points) was able to represent these systems with 61% variability of the observed data and a confidence level higher than 99.9%. The smaller sample (31 points) was defined by means extrapolation lines, as described in the standard ISO11358, permitting identifying the liquid microemulsion regions of the system composed of kerosene, NP80 and salt water. This result is very promising since it permits determining the conditions of interest with significantly less experimental work, and commensurate reduction of the final cost of the experiments.
Downloads
Downloads
Published
Issue
Section
License
AUTHORS’ DECLARATION AND COPYRIGHT TRANSFER AGREEMENT
The undersigned authors hereby declare that the submitted manuscript is an original work and has not been previously published or submitted, in whole or in part, to any other journal. The authors further commit not to submit this work to any other journal while it is under consideration by BJEDIS.
We affirm that the manuscript is free from plagiarism, and we accept full responsibility for any allegations of academic misconduct that may arise.
By submitting this manuscript, the authors irrevocably transfer all copyrights of the work—including, without limitation, the rights of reproduction, distribution, translation, and public communication in any form or medium—to BJEDIS. Any breach of this agreement may result in legal action in accordance with the Brazilian Copyright Law (Law No. 9.610 of February 19, 1998).
The authors also declare that there are no conflicts of interest related to this work. All sources of financial support have been properly acknowledged in the funding section of the manuscript.
