Amanda Cantarute Rodrigues, Bianca Morelatto Dal Vesco, Carolina Mendes Muniz, Carolina Pedrozo Nascimento, Gustavo Faccin Andreotti, Jonas Campaner Alves, Marcelo Henrique Fressatti Cardoso, Marcelo Henrique Schmitz, Maria Julia Mileo Ganassin, Mariele Pasuch de Camargo, Matheus Gimenez Buzo, Matheus Tenório Baumgartner, Natália Carneiro Lacerda dos Santos, Angelo Antonio Agostinho, Luiz Carlos Gomes


Environmental characteristics of an invaded environment can predict the invasion success of a species, depending on its habits and life strategies. Cichla kelberi is a visual and voracious predator introduced in the Upper Paraná River floodplain, an area that suffers with several upstream dams that caused many environmental changes over the years (e.g. increased water transparency). As this species is a pre-adapted species to environments that presents high water transparency, our main goal was to test the hypothesis that variables related to the underwater visibility would be important drivers of the successful invasion of C. kelberi in the Upper Paraná River floodplain. We predict that turbidity (proxy of water transparency) is one of the major limnological determinants of occurrence and abundance of C. kelberi. Individuals of the invasive species and seven limnological variables were sampled quarterly between February 2000 and November 2018. This long-term data is part of the sixth site of the Brazilian Long Term Ecological Program (PELD). We fitted two regression models to all occurrence and abundance data (response variables) against the limnological variables (explanatory variables). For occurrence data, we fitted a Generalized Linear Mixed Model and for abundance data, we fitted a Linear Mixed Effects Model. The occurrence data of C. kelberi showed that turbidity and dissolved oxygen were the variables that most influenced the presence of this species, negatively and positively, respectively. The abundance data showed that dissolved oxygen and concentration of chlorophyll-a were the ones that most influenced the abundance of this species, negatively and positively, respectively. Our findings showed that besides turbidity, other limnological variables were also determinants for the occurrence and abundance of C. kelberi. Therefore, our results provided important information about the main environmental drivers of the establishment process of C. kelberi in the Upper Paraná River floodplain.


Brazilian Long Term Ecological Program; Paraná River floodplain; Peacock-bass; successful invasion; underwater visibility


Agostinho, A. A., Julio Jr, H. F., & Petrere Jr, M. 1994. Itaipu reservoir (Brazil): impacts of the impoundment on the fish fauna and fisheries. In: I. G. Cowx (Ed.), Rehabilitation of freshwater fisheries. pp. 171–184. United Kingdom: Fishing News Books.

Agostinho, A. A., Thomaz, S. M., & Gomes, L. C. 2004a. Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. Ecohydrology & Hydrobiology, 4(3), 255–268.

Agostinho, A. A., Gomes, L. C., Thomaz, S. M., Hahn, N. S. 2004b. The upper Paraná River and its floodplain: main characteristics and perspectives for management and conservation. In: S. M. Thomaz, A. A., Agostinho & N. S. Hahn (Eds.), The upper Paraná River and its floodplain: physical aspects, ecology and conservation. pp. 381–393. Leiden: Backhuys Publishers.

Agostinho, A. A., Bini, L. M., Gomes, L. C., Julio Junior, H. F., Pavanelli, C. S., & Agostinho, C. S. 2004c. Fish assemblages. In: S. M. Thomaz, A. A. Agostinho & N. S. Hahn (Eds.), The upper Paraná River and its floodplain: physical aspects, ecology and conservation. pp. 223–246. Leiden: Backhuys Publishers.

Agostinho, A. A., Gomes, L. C., & Pelicice, F. M. 2007a. Ecologia e Manejo de Recursos Pesqueiros em Reservatórios do Brasil. Maringá: EDUEM: p. 260.

Agostinho, A. A., Pelicice, F. M., Petry, A. C., Gomes, L. C., & Júlio Jr., H. F. 2007b. Fish diversity in the upper Paraná River basin: habitats, fisheries, management and conservation. Aquatic Ecosystem Health & Management, 10(2), 174–186. DOI: 10.1080/14634980701341719

Bajer, P. G., Cross, T. K., Lechelt, J. D., Chizinski, C. J., Weber, M. J., & Sorensen, P. W. 2015. Across-ecoregion analysis suggests a hierarchy of ecological filters that regulate recruitment of a globally invasive fish. Diversity and Distributions, 21(5), 500–510. DOI: 10.1111/ddi.12315

Bates, D., Maechler, M., Bolker, B., & Walker, S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. DOI: 10.18637/jss.v067.i01

Catford, J. A., Jansson, R., & Nilsson, C. 2009. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Diversity and Distributions, 15(1), 22–40. DOI: 10.1111/j.1472-4642.2008.00521.x

Clusa, L., Miralles, L., Fernández, S., García-Vázquez, E., & Dopico, E. 2018. Public knowledge of alien species: a case study on aquatic biodiversity in North Iberian rivers. Journal of Nature Conservation, 4, 53–61. DOI: 10.1016/j.jnc.2018.01.001

Cook, C. D. K., & Lüönd, R. 1982. A revision of the genus Hydrilla (Hydrocharitaceae). Aquatic Botany, 13, 485–504. DOI: 10.1016/0304-3770(82)90074-2

Espínola, L. A., & Júlio Júnior, H. F. 2007. Espécies invasoras: conceitos, modelos e atributos. Interciência, 32(9), 580–585.

Espínola, L. A., Minte-Vera, C. V., & Júlio-Jr, H. F. 2010. Invasibility of reservoir in Paraná Basin, Brazil, to Cichla kelberi Kullander and Ferreira, 2006. Biological Invasions, 12(6), 1873–1888. DOI: 10.1007/s10530-009-9598-x

Essl, F., Dullinger, S., Rabitsch, W., Hulme, P. E., Hülbe, K., Jarošík, V., Kleinbauer, I., Krausmann, F., Kühn, I., Nentwig, W., Vilà, M., Genovesi, P., Gherardi, F., Desprez-Loustau, M., Roques, A., & Pyšek, P. 2011. Socioeconomic legacy yields an invasion debt. Proceeding of the National Academy of Sciences of the United States of America, 108(1), 203–207. DOI: 10.1073/pnas.1011728108

Fugi, R., Luz-Agostinho, K. D. G., & Agostinho, A. A. 2008. Trophic interaction between an introduced (peacock bass) and a native (dogfish) piscivorous fish in a Neotropical impounded river. Hydrobiologia, 607(1), 143–150. DOI: 10.1007/s10750-008-9384-2

Gois, K. S., Pelicice, F. M., Gomes, L. C., & Agostinho, A. A. 2015. Invasion of an Amazonian cichlid in the Upper Paraná River: facilitation by dams and decline of a phylogenetically related species. Hydrobiologia, 746(1), 401–413. DOI: 10.1007/s10750-014-2061-8

Graça, W. J., & Pavanelli, C. S. 2007. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes. Maringá: EDUEM: p. 241.

Granzotti, R. V., Miranda, L. E., Agostinho, A. A., & Gomes, L. C. 2018. Downstream impacts of dams: shifts in benthic invertivorous fish assemblages. Aquatic Sciences, 80:28. DOI: 10.1007/s00027-018-0579

Huston, M. A. 1979. A general hypothesis of species diversity. The American Naturalist, 113(1), 81–101. DOI: 10.1086/283366

Huston, M. A. 2004. Management strategies for plant invasions: manipulating productivity, disturbance, and competition. Diversity and Distributions, 10(3), 167–178. DOI: 10.1111/j.1366-9516.2004.00083.x

Júlio Júnior, H. F., Dei Tós, C., Agostinho, A. A., & Pavanelli, C. S. 2009. A massive invasion of fish species after eliminating a natural barrier in the upper rio Paraná basin. Neotropical Ichthyology, 7(4), 709–718. DOI: 10.1590/S1679-62252009000400021

Junk, W. J., Bayley, P. B., & Sparks, R. E. 1989. The flood pulse concept in river-floodplain systems. In: P. D. Dodge (Ed.), Proceedings of the International Large River Sysmposium. Canadian Special Publication of Fisheries and Aquatic Sciences. pp. 110–127. Ontario, Canada.

Langeland, K. A. 1996. Hydrilla verticillata (L.f.) Royle (Hydrocharitaceae), “The perfect aquatic weed”. Castanea, 61, 293–304.

Lagos, M. E., Barneche, D. R., White, C. R., & Marshall, D. J. 2017. Do low oxygen environments facilitate marine invasions? Relative tolerance of native and invasive species to low oxygen conditions. Global Change Biology, 23(6), 2321–2330. DOI:10.1111/gcb.13668

Lechelt, J. D., & Bajer, P. G. 2016. Elucidating the mechanism underlying the productivity-recruitment hypothesis in the invasive common carp. Aquatic Invasions, 11(4), 469–482. DOI: 10.3391/ai.2016.11.4.11

Leuven, R. S. E. W., Boggero, A., Bakker, E. S., Elgin, A. K., & Verreycken, H. 2017. Invasive species in inland waters: from early detection to innovative management approaches. Aquatic Invasions, 12(3), 269–273. DOI: 10.3391/ai.2017.12.3.01

Luz-Agostinho, K. D. G., Agostinho, A. A., Gomes, L. C., & Júlio Jr., H. F. 2008. Influence of flood pulses on diet composition and trophic relationships among piscivorous fish in the upper Paraná River floodplain. Hydrobiologia, 607, 187–198. DOI: 10.1007/s10750-008-9390-4

Melbourne, B. A., Cornell, H. V., Davies, K. F., Dugae, C. J., Elmendorf, S., Freestone, A. L., Hall, R. J., Harrison, S., Hastings, A., Holland, M., Holyoak, M., Lambrinos, J., Moore, K., & Yokomizo, H. 2007. Invasion in a heterogeneous world: resistance, coexistence or hostile takeover? Ecology Letters, 10(1), 77–94. DOI: 10.1111/j.1461-0248.2006.00987.x

Miranda, L. E., Driscoll, M. P., & Allen, M. S. 2000. Transient physicochemical microhabitats facilitate fish survival in inhospitable aquatic plant stands. Freshwater Biology, 44(4), 617–628. DOI: 10.1046/j.1365-2427.2000.00606.x

Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. W., & Bellwood, D. R. 2013. A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution, 28(3), 167–177. DOI: 10.1016/j.tree.2012.10.004

Novaes, J. L. C., Caramaschi, E. P., & Winemiller, K. O. 2004. Feeding of Cichla monoculus Spix, 1829 (Teleostei: Cichlidae) during and after reservoir formation in the Tocations River, Central Brazil. Acta Limnologica Brasiliensia, 16(1), 41–49.

Oliveira, A. G., Baumgartner, M. T., Gomes, L. C., Dias, R. M., & Agostinho, A. A. 2018. Long-term effects of flow regulation by dams simplify fish functional diversity. Freshwater Biology, 63(3), 293–305. DOI: 10.1111/fwb.13064

Ortega, J. C. G., Dias, R. M., Petry, A. C., Oliveira, E. F., & Agostinho, A. A. 2015. Spatio-temporal organization patterns in the fish assemblages of a Neotropical floodplain. Hydrobiologia, 745, 31–41. DOI: 10.1007/s10750-014-2089-9

Ota, R. R., Deprá, G. C., Graça, W. J., & Pavanelli, C. S. 2018. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes: revised, annotated and updated. Neotropical Ichthyology, 16(2), e170094. DOI: 10.1590/1982-0224-20170094

Pelicice, F. M., & Agostinho, A. A. 2009. Fish fauna destruction after the introduction of a non-native predator (Cichla kelberi) in a Neotropical reservoir. Biological Invasions, 11(8), 1789–1801. DOI: 10.1007/s10530-008-9358-3

Pelicice, F. M., Vitule, J. R. S., Lima Júnior, D. P., Orsi, M. L., & Agostinho, A. A. 2014. A serious new threat to Brazilian freshwater ecosystems: the naturalization of nonnative fish by decree. Conservation Letters, 7(1), 55–60. DOI: 10.1111/conl.12029

Pelicice, F. M., Latini, J. D., & Agostinho, A. A. 2015. Fish fauna disassembly after the introduction of a voracious predator: main drivers and the role of the invader’s demography. Hydrobiologia, 746(1), 271–283. DOI: 10.1007/s10750-014-1911-8

Pereira, L. S., Agostinho, A. A., & Delariva, R. L. 2016. Effects of river damming in Neotropical piscivorous and omnivorous fish: feeding, body condition and abundances. Neotropical Ichthyology, 14(1), e150044. DOI: 10.1590/1982-0224-20150044

Pörtner, H. O., Mark, F. C., & Bock, C. 2004. Oxygen limited thermal tolerance in fish?: Answers obtained by nuclear magnetic resonance techniques. Respiratory Physiology & Neurobiology, 141(3), 243–260. DOI: 10.1016/j.resp.2004.03.011

Queiroz-Sousa, J., Keith, S. A., David, G. S., Brandão, H., Nobile, A. B., Paes, J. V. K., Souto, A. C., Lima, F. P., Silva, R. J., Henry, R., & Richardson, K. 2019. Species richness and functional structure of fish assemblages in three freshwater habitats: effects of environmental factors and management. Journal of Fish Biology. 95(4):1125–1136. DOI: 10.1111/jfb.14109

R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AT.

Rahel, F. J. 2000. Homogenization of fish faunas across the United States. Science, 288(5467), 854–856. DOI: 10.1126/science.288.5467.854

Rodrigues, L. C., Train, S., Roberto, M. C., & Pagioro, T. A. 2002. Seasonal fluctuation of some limnological variables on a floodplain lake (Patos lagoon) of the Upper Paraná River, Mato Grosso do Sul State, Brazil. Brazilian Archives of Biology and Technology, 45(4), 499–513. DOI: 10.1590/S1516-89132002000600014

dos Santos, N. C. L., García-Berthou, E., Dias, J. D., Lopes, T. M., Affonso, I. P., Severi, W, Gomes, L. C., & Agostinho, A. A. 2018. Cumulative ecological effects of a Neotropical reservoir cascade across multiple assemblages. Hydrobiologia, 819(1), 77–91. DOI: 10.1007/s10750-018-3630-z

Simberloff, D., Martin, J. L., Genovesi, P., Maris, V., Wardle, D. A., Aronson, J., Courchamp, F., Galil, B., García-Berthou, E., Pascal, M., Pyšek, P., Sousa, R., Tabacchi, E., & Vilà, M. 2013. Impacts of biological invasions: what’s what and the way forward. Trends in Ecology & Evolution, 28(1), 58–66. DOI: 10.1016/j.tree.2012.07.013

Stevaux, J. C., Martins, D. P., & Meurer, M. 2009. Changes in a large regulated tropical river: the Paraná River downstream from the Porto Primavera Dam, Brazil. Geomorphology, 113(3-4), 230–238. DOI: 10.1016/j.geomorph.2009.03.015

Strayer, D. L. 2010. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biology, 55(s1), 152–174. DOI: 10.1111/j.1365-2427.2009.02380.x

Takeda, A. M., Fujita, D. S., De Melo, S. M., Ibarra, J. A., De Butakka, C. M. M., De Oliveira, D. P., Braga, C. P., Fujita, R. H., Rosin, G. C., & Fernandes, S. E. P. 2003. Comunidade zoobentônica. In: UEM – NUPÉLIA/PELD. A planície de inundação do alto rio Paraná: Relatório Técnico-site 6. Maringá. pp. 39–51.

Thomaz, S. M., Bini, L. M., & Bozelli, R. L. 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia, 579(1), 1–13. DOI: 10.1007/s10750-006-0285-y

Tonella, L. H., Fugi, R., Vitorino Jr., O. B., Suzuki, H. I., Gomes, L. C., & Agostinho, A. A. 2018. Importance of feeding strategies on the long-term success of fish invasions. Hydrobiologia, 817(1), 239–252. DOI: 10.1007/s10750-017-3404-z

Vatland, S., & Budy, P. 2007. Predicting the invasion success of an introduced omnivore in a large, heterogeneous reservoir. Canadian Journal of Fish and Aquatic Science, 64(10), 1329–1345. DOI: 10.1139/f07-100

Villéger, S., Blanchet, S., Beauchard, O., Oberdorff, T., & Brosse, S. 2011. Homogenization patterns of the world’s freshwater fish faunas. Proceedings of the National Academy of Sciences, 108(44), 18003–18008. DOI: 10.1073/pnas.1107614108

Vitule, J. R. S., Freire, C. A., Vazquez, D. P., Nuñes, M. A., & Simberloff, D. 2012. Revisiting the potential conservation value of nonnative species. Conservation Biology, 26(6), 1153–1155. DOI: 10.1111/j.1523-1739.2012.01950.x

Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A.A., & Smith, G. M. 2009. Meet the Exponential Family. In: A. F. Zuur, E. N. Ieno, N. J. Walker, A. A. Saveliev, & G. M. Smith (Eds.), Mixed effects models and extensions in Ecology with R. pp. 193–208. New York: Springer.



  • There are currently no refbacks.