MODELING THE POTENTIAL DISTRIBUTION OF Anamaria heterophylla (GIUL. & V.C. SOUZA) V.C. SOUZA (PLANTAGINACEAE) IN THE CAATINGA
DOI:
https://doi.org/10.4257/oeco.2020.2401.06Palavras-chave:
conservation of biodiversity, semiarid, species distribution modeling, temporary pondsResumo
Species distribution modeling (SDM) is a tool with several ecological applications, including predicting biological invasions and indicating environmentally appropriate areas for the occurrence of endemic or endangered species. The Caatinga endemic plant species Anamaria heterophylla (Plantaginaceae) is of rare occurrence and lives in ecologically vulnerable aquatic environments; the species is used as a parameter for the selection of Priority Areas for the Conservation of the Caatinga (PACCs). The objectives of this study were to estimate its potential geographic distribution and the climatic conditions across its distributional range, as well as to identify suitable areas for its occurrence, aiming to evaluate the efficiency of the current Protected Areas (PAs) and PACCs network as to the protection of the species. We developed SDM for A. heterophylla using the MaxEnt algorithm, based on 26 occurrence points, and evaluated the importance of environmental variables and the predictive ability of the generated distribution models. Our results predicted that the distribution of A. heterophylla is tightly guided by conditions of high aridity and low annual precipitation. The potential distribution model indicated three broad areas with high environmental suitability (probability of presence ≥ 0.8): one in the western of the state of Ceará, one between northern Bahia and western Pernambuco states, and another between the central region of the states of Rio Grande do Norte and Paraíba, which overlap in large part the Caatinga regions where temporary ponds (primary habitat of A. heterophylla) are numerous. We found out that nine areas of the PAs and PACCs network of protecting areas presented high environmental suitability, as indicated by the SDM. Based on these findings, we recommend that future collection efforts for A. heterophylla focus on the key locations identified through the SDM, and we hope that this may serve to support future actions regarding the selection of important areas for biodiversity conservation in the Caatinga.
Referências
Alencar, J. L. M., Kaltchuk-Santos, E., Fachinetto, J., Tacuatiá, L. O., Forni-Martins, E. R., Stiehl-Alves, E. M., & Souza-Chies, T. T. 2018. Genetic and ecological niche modeling of Calydorea crocoides (Iridaceae): an endemic species of Subtropical Highland Grasslands. Genetics and Molecular Biology, 41(1), 327–340. DOI: 10.1590/1678-4685-gmb-2017-0078
Allouche, O., Tsoar, A., & Kadmon, R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of applied ecology, 43(6), 1223–1232. DOI: 10.1111/j.1365-2664.2006.01214.x
Anderson, R. P., Lew, D., & Peterson, A. T. 2003. Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecological Modelling, 162(3), 211–232. DOI: 10.1016/S0304-3800(02)00349-6
Andrade, E. M., Aquino, D. N., Chaves, L. C. G., & Lopes, F. B. 2017. Water as capital and its uses in the Caatinga. In: J. M. C. Silva, I. R. Leal, & M. Tabarelli (Eds.), Caatinga: the largest tropical dry forest region in South America. pp. 281–302. Springer.
Andrade, E. M., Sena, M. G. T., Silva, A. G. R., Pereira, F. J. S., & Lopes, F. B. 2016. Uncertainties of the rainfall regime in a tropical semi-arid region: the case of the State of Ceará. Revista Agro@mbiente On-line, 10(2), 88–95. DOI: 10.18227/1982-8470ragro.v10i2.3500
Araújo, M. B., & Williams, P. H. 2000. Selecting areas for species persistence using occurrence data. Biological Conservation, 96(3), 331–345. DOI: 10.1016/S0006-3207(00)00074-4
Bosso, L., Conno, C., & Russo, D. 2017. Modelling the risk posed by the zebra mussel Dreissena polymorpha: Italy as a case study. Environmental Management, 60(2), 304–313. DOI: 10.1007/s00267-017-0882-8
Brock, M. A., Nielsen, D. L., Shiel, R. J., Green, J. D., & Langley, J. D. 2003. Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands. Freshwater Biology, 48(7), 1207–1218. DOI: 10.1046/j.1365-2427.2003.01083.x
Campelo, M. J. A. 2014. Richness of the aquatic macrophytes in the temporary lagoons in the semiarid of northeastern Brazil. International Journal of Research In Earth & Environmental Sciences, 2(7), 1–11.
Campelo, M. J. A., Siqueira-Filho, J. A., & Cotarelli, V. M. 2013. Structure community of aquatic macrophytes in springs of the semiarid, northeast Brazil. International Journal of Scientific Knowledge, 4, 14–22.
Campelo, M. J. A., Siqueira-Filho, J. A., Cotarelli, V. M., Souza, E. B., Pimenta, W. A., & Pott, J. V. 2012. Macrófitas aquáticas nas áreas do Projeto da Integração do Rio São Francisco. In: J. A. Siqueira-Filho (Ed.), Flora das Caatingas do Rio São Francisco. pp. 192–229. Rio de Janeiro: Andrea Jakobsson Estúdio Editorial.
Cayuela, L., Golicher, D. J., Newton, A. C., Kolb, M., Alburquerque, F. S., Arets, E. J. M. M., Alkemade, J. R. M., & Pérez, A. M. 2009. Species distribution modeling in the tropics: problems, potentialities, and the role of biological data for effective species conservation. Tropical Conservation Science, 2(3), 319–352. DOI: 10.1177/194008290900200304
Cherry, J. A., & Gough, L. 2006. Temporary floating island formation maintains wetland plant species richness: the role of the seed bank. Aquatic Botany, 85(1), 29–36. DOI: 10.1016/j.aquabot.2006.01.010
Crimmins, S. M., Dobrowski, S. Z., & Mynsberge, A. R. 2013. Evaluating ensemble forecasts of plant species distributions under climate change. Ecological Modelling, 266(1), 126–130. DOI: 10.1016/j.ecolmodel.2013.07.006
Crossman, N. D., & Bass, D. A. 2008. Application of common predictive habitat techniques for post‐border weed risk management. Diversity and Distributions, 14(2), 213–224. DOI: 10.1111/j.1472-4642.2007.00436.x
Cunningham, R. B., & Lindenmayer, D. B. 2005. Modeling count data of rare species: some statistical issues. Ecology, 86(5), 1135–1142. DOI: doi.org/10.1890/04-0589
De Marco-Júnior, P., & Siqueira, M. F. 2009. Como determinar a distribuição potencial de espécies sob uma abordagem conservacionista? Megadiversidade, 5(1-2), 65–76.
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46. DOI: 10.1111/j.1600-0587.2012.07348.x
Eisenlohr, P. V. 2014. Persisting challenges in multiple models: a note on commonly unnoticed issues regarding collinearity and spatial structure of ecological data. Brazilian Journal of Botany, 37(3), 365–371. DOI: 10.1007/s40415-014-0064-3
Engler, R. Guisan, A. & Rechsteiner, L. 2004. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology, 41, 263–274. DOI: 10.1111/j.0021-8901.2004.00881.x
Esteves, F. A. 2011. Comunidades de macrófitas aquáticas. In: F. A. Esteves (ed.), Fundamentos da Limnologia. 2nd ed. pp. 101-132. Rio de Janeiro: Editora Interciência.
Fick, S. E., & Hijmans, R. J. 2017. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. DOI: 10.1002/joc.5086
Fielding, A. H., & Bell, J. F. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38–49.
GBIF.org. 2018. GBIF Home Page. Retrieved on April 5th, 2018, from: https://www.gbif.org
Giannini, T. C., Siqueira, M. F., Acosta, A. L., Barreto, F. C. C., Saraiva, A, M., & Alves-dos-Santos, I. 2012. Desafios atuais da modelagem preditiva de distribuição de espécies. Rodriguésia, 63(3), 733–749. DOI: 10.1590/S2175-78602012000300017
Giulietti, A. M., Bocage-Neta, A. L., Castro, A. A. J. F., Gamarra-Rojas, C. F. L., Sampaio, E. V. S. B., Virgínio, J. F., & Harley, R. M. 2003a. Diagnóstico da vegetação nativa do bioma Caatinga. In: J. M. C. Silva, M. Tabarelli, M. T. Fonseca, & L. V. Lins (eds.), Biodiversidade da caatinga: áreas e ações prioritárias para a conservação. pp. 47–90. Brasília, DF: Ministério do Meio Ambiente/Universidade Federal de Pernambuco.
Giulietti, A. M., Paula, A., & Barbosa, D. 2003b. Vegetação: áreas e ações prioritárias para a conservação da Caatinga. . In: J. M. C. Silva, M. Tabarelli, M. T. Fonseca, & L. V. Lins (eds.), Biodiversidade da caatinga: áreas e ações prioritárias para a conservação. pp. 113–132. Brasília, DF: Ministério do Meio Ambiente/Universidade Federal de Pernambuco.
Grillas, P., Garcia-Murillo, P., Geertz-Hansen, O., Marbá, N., Montes, C., Duarte, C. M., Ham, L. T., & Grossmann, A. 1993. Submerged macrophyte seed bank in a Mediterranean temporary marsh: abundance and relationship with established vegetation. Oecologia, 94(1), 1–6.
Guisan, A., & Thuiller, W. 2005. Predicting species distribution: offering more than simple habitat models. Ecology letters, 8(9), 993–1009. DOI: 10.1111/j.1461-0248.2005.00792.x
Hammer, U. T. 1986. Saline lake ecosystems of the world. Springer Science & Business Media: p. 616
Hao, T., Elith, J., Guillera‐Arroita, G., & Lahoz‐Monfort, J. J. 2019. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Diversity and Distributions, 25(5), 839–852. DOI: 10.1111/ddi.12892
Hassemer, G., Giovanni, R., & Trevisan, R. 2015. The use of potential distribution models in the study of the distribution and conservation status of plants: The case of Plantago L. (Plantaginaceae) in Brazil1. The Journal of the Torrey Botanical Society, 143(1), 38–50. DOI: 10.3159/TORREY-D-14-00070
Heikkinen, R. K., Luoto, M., Virkkala, R., & Rainio, K. 2004. Effects of habitat cover, landscape structure and spatial variables on the abundance of birds in an agricultural-forest mosaic. Journal of Applied Ecology, 41(15), 824–835. DOI: 10.1111/j.0021-8901.2004.00938.x
Hoveka, L. N., Bezeng, B. S., Yessoufou, K., Boatwright, J. S., & Van der Bank, M. 2016. Effects of climate change on the future distributions of the top five freshwater invasive plants in South Africa. South African Journal of Botany, 102(1), 33–38. DOI: 10.1016/j.sajb.2015.07.017
IBGE - Instituto Brasileiro de Geografia e Estatística. 2016. Bases cartográficas contínuas. Retrieved on September 2nd, 2017, from https://downloads.ibge.gov.br/downloads_geociencias.htm
INPE - Instituto Nacional De Pesquisas Espaciais. 2016. Variáveis ambientais para modelagem de distribuição de espécies – AMBDATA. Retrieved on September 2nd, 2016, from http://www.dpi.inpe.br/Ambdata/
Kamino, L. H. Y., Siqueira, M. F., Sánchez-Tapia, A., & Stehman, J. R. 2012. Reassessment of the extinction risk of endemic species in the Neotropics: How can modelling tools help us? Natureza & Conservação, 10(2), 191–198. DOI: 10.4322/natcon.2012.033
Kamino, L. H., Stehmann, J. R., Amaral, S., De Marco, P., Rangel, T. F., Siqueira, M. F., Giovanni, R., & Hortal, J. 2011. Challenges and perspectives for species distribution modeling in the neotropics. Biology Letters, 8, 324–326. DOI: 10.1098/rsbl.2011.0942
Koch, R., Almeida-Cortez, J. S., & Kleinschmit, B. 2017. Revealing areas of high nature conservation importance in a seasonally dry tropical forest in Brazil: Combination of modelled plant diversity hot spots and threat patterns. Journal for Nature Conservation, 25, 24–39. DOI: 10.1016/j.jnc.2016.11.004
Lehtonen, S. 2009. On the origin of Echinodorus grandiflorus (Alismataceae) in Florida (“E. floridanus”), and its estimated potential as an invasive species. Hydrobiologia, 635(1), 107–112. DOI: 10.1007/s10750-009-9903-9
Lopes, A., Wittmann, F., Schöngart, J., Householder, J. E., & Piedade, M. T. F. 2017. Modeling of regional- and local-scale distribution of the genus Montrichardia Crueg. (Araceae). Hidrobiologia, 789(1), 45–57. DOI: 10.1007/s10750-016-2721-y
Loyola, R. D., & Lewinsohn, T. M. 2009. Diferentes abordagens para a seleção de prioridades de conservação em um contexto macrogeográfico. Megadiversidade, 5(1-2), 27–42.
Maciel, J. R., Ferreira, J. V. A., & Siqueira-Filho, J. A. 2012. Modelagem de distribuição de espécies arbóreas na recuperação de áreas degradadas da Caatinga. In: J. A. Siqueira-Filho (ed.), Flora das Caatingas do rio São Francisco. pp. 232–263. Rio de Janeiro: Andrea Jakobsson Estúdio Editorial.
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K., & Thuiller, W. 2009. Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions, 15(1), 59–69. DOI: 10.1111/j.1472-4642.2008.00491.x
Mellin, C., Bradshaw, C. J. A, Meekan, M. G., & Caley, M. J. 2010. Environmental and spatial predictors of species richness and abundance in coral reef fishes. Global Ecology and Biogeography, 19(2), 212–222. DOI: 10.1111/j.1466-8238.2009.00513.x
MMA - Ministério Do Meio Ambiente. 2016a. Resultados da 2º Atualização das Áreas Prioritárias. Retrieved on April 4th, 2017, from http://www.mma.gov.br/biodiversidade/biodiversidade-brasileira/%C3%A1reas-priorit%C3%A1rias/item/10724
MMA - Ministério Do Meio Ambiente. 2016b. Cadastro Nacional de Unidades de Conservação (atualizado). Retrieved on December 4th, 2016, from http://mapas.mma.gov.br/i3geo/datadownload.htm
Moura-Júnior, E. G., Paiva, R. M. S. D., Ferreira, A. C., Pacopahyba, L. D., Tavares, A. S., Ferreira, F. A., & Pott, A. 2015. Updated checklist of aquatic macrophytes from Northern Brazil. Acta Amazonica, 45(2), 111–32. DOI: 10.1590/1809-4392201402662
Moura-Júnior, E. G., Valentin-de-Souza, R. L., & Milhomens, L. B. S. 2016. New record of Pithophora roettleri (Roth) Wittrock, 1877 (Chlorophyta: Pithophoraceae) for the Sao Francisco River basin and its potential geographic distribution in Brazil. CheckList, 12(3), 1–7. DOI: 10.15560/12.3.1899
Mukherjee, A., Christman, M. C., Overholt, W. A., & Cuda, J. P. 2011. Prioritizing areas in the native range of hygrophila for surveys to collect biological control agents. Biological Control, 56(3), 254–262. DOI: 10.1016/j.biocontrol.2010.11.006
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B., & Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858. DOI: 10.1038/35002501
Oksanen, J., Blanchet, F. G., Friendly, m., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. 2015. Vegan: community ecology package. R package vegan, vers. 2.2-1. Retrieved on January 15th, 2018, from http://CRAN.Rproject.org/package=vegan2015
Oliveira, U., Soares-Filho, B. S., Paglia, A. P., Brescovit, A. D., Carvalho, C. J., Silva, D. P., Rezende, D. T., Leite, F. S. F., Batista, J. A. N., Barbosa, J. P. P. P., Stehmann, J. R., Ascher, J. S., Vasconcelos, M. F., Marco, P., Löwenberg-Neto, P., Ferro, V. G., & Santos, A. J. 2017. Biodiversity conservation gaps in the Brazilian protected areas. Scientific reports, 7(1), 9141. DOI: 10.1038/s41598-017-08707-2
Peterson, A. T., Papes, M., & Eaton, M. 2007. Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography, 30(4), 550–560. DOI: 10.1111/j.0906-7590.2007.05102.x
Phillips, S. J., Anderson, R. P., & Schapired, R. E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231–259. DOI: 10.1016/j.ecolmodel.2005.03.026
Phillips, S. J., Dudík, M., & Schapire, R. E. 2004. A maximum entropy approach to species distribution modeling. In: International Conference on Machine Learning (ed.), Proceedings of the 21st International Conference on Machine Learning. pp. 655–662. New York: ACM Press.
Proosdij, A. S., Sosef, M. S., Wieringa, J. J., & Raes, N. 2016. Minimum required number of specimen records to develop accurate species distribution models. Ecography, 39(6), 542–552. DOI: 10.1111/ecog.01509
R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. Retrieved on January 12th, 2018, from http://www.R-project.org/
Sampaio, E. V. S. B. 2010. Características e potencialidades. In: M. A. Gariglio, E. V. S. B. Sampaio, L. A. Cestaro, & P. Y. Kageyama (Eds.), Uso sustentável e conservação dos recursos florestais da Caatinga. pp. 29–48. Brasília: Serviço Florestal Brasileiro.
Siqueira-Filho, J. A. D. 2012. Flora of the Caatingas of the São Francisco River: natural history and conservation. Rio de Janeiro: Andrea Jakobsson Estúdio Editorial: p. 552.
Siqueira, M. F., Durigan, G., Marco-Junior, P. & Peterson, A. T. 2009. Something from nothing: Using landscape similarity and ecological niche modeling to find rare plant species. Journal for Nature Conservation, 17(1), 25–32. DOI: 10.1016/j.jnc.2008.11.001
Souza, V. C. 2001. Anamaria: um novo gênero de Scrophulariaceae do Brasil. Boletim de Botânica da Universidade de São Paulo, 19, 43–44. DOI: 10.11606/issn.2316-9052.v19i0p43-44
Souza, V. C., Scatigna, A. V., Hassemer, G., & Colletta, G. D. 2017. Plantaginaceae in Flora do Brasil 2020 in construction, Jardim Botânico do Rio de Janeiro. Retrieved on January 15th, 2017, from http://reflora.jbrj.gov.br/
SpeciesLink. 2018. Sistema distribuído de informação de dados primários de coleções científicas. Retrieved on December 5th, 2018, from http://www.splink.org.br
Thomaz, S. M., Bini, L. M., & Bozelli, R. L. 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia, 579(1), 1–13. DOI: 10.1007/s10750- 006- 0285-y
Wetzel, R. G. 2001. Limnology: lake and river ecosystems. Philadelphia: Gulf professional publishing: p. 1006.
Whittaker, R. J., Araújo, M. B., Jepson, P., Ladle, R. J., Watson, J. E. M., & Willis, K. J. 2005. Conservation Biogeography: assessment and prospect. Diversity and Distributions, 11(1), 3–23. DOI: 10.1111/j.1366-9516.2005.00143.x
Williams, D. D. 2006. The biology of temporary waters. Oxford: Oxford University Press: p. 348.
Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., & NCEAS Predicting Species Distributions Working Group. 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14(5), 763–773. DOI: 10.1111/j.1472-4642.2008.00482.x
Zomer, R. J., Bossio, D. A., Trabucco, A., Yuanjie, L., Gupta, D. C., & Singh, V. P. 2007. Trees and water: Smallholder agroforestry on irrigated lands in Northern India. Sri Lanka: Colombo: p. 43. DOI: 10.3910/2009.122