APPLICABILITY OF SEED BANK ASSESSMENT METHODS IN WETLANDS: ADVANTAGES AND DISADVANTAGES

Autores

  • Francielli Bao Universidade Estadual Paulista (UNESP) https://orcid.org/0000-0003-0536-1668
  • Marco Antonio Assis Universidade Estadual Paulista (UNESP)
  • Arnildo Pott Universidade Federal de Mato Grosso do Sul (UFMS)

DOI:

https://doi.org/10.4257/oeco.2021.2501.03

Palavras-chave:

diaspore, floodplain, predation seeds, regeneration mechanism, seedlings.

Resumo

: The soil seed bank is the primary source of regeneration in wetlands and has different assessment methods that vary according to the objective of the study. We evaluated the seed bank composition using three methods: seedlings emergence (EME), seedlings emergence with submersion trays in water (SUB) and screening and counting seeds (COU), and finally, we evaluated the applicability of COU to assess seed predation. The abundance and species richness were evaluated for two years at the end of the flood and dry seasons, in the Brazilian Pantanal. The abundance and species richness differed significantly between methods and seasons. The COU method showed the highest richness (84) and abundance (95.023) followed by EME and SUB. The SUB method reflected only the aquatic community. In the flood season, EME and COU methods showed similar species composition. There were no differences between COU and EME + SUB.  The main advantage of COU method was the possibility to assess the seed predation, and we detected that Croton trinitatis had 32% of predated seeds. We consider that wetland ecosystems can be sampled by both methods COU and EME + SUB; however, the complete method that can be used for different purposes is COU, also, must be considered the infrastructure and objective of each study.


Referências

Anthony, R. S. 2019. Seed bank and Invertebrate Potential of Moist-Soil Managed Wetland Units in New Mexico and West Texas. Master thesis. College of Agricultural and Natural Resource Sciences of Sul Ross State University.

APG IV. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181, 1–20. DOI: 10.1111/boj.12385

Baldwin, A. H., Egnotovich, M. S., & Clarke, E. 2001. Hydrologic change and vegetation of tidal freshwater marshes: field, greenhouse, and seed-bank experiments. Wetlands, 21, 519–531. DOI: doi.org/10.1672/0277-5212(2001)021[0519: HCAVOT]2.0.CO;2

Bao, F., Pott, A., Ferreira, F. A., & Arruda, R. 2014. Soil seed bank of floodable native and cultivated grassland in the Pantanal wetland: effects of flood gradient, season and species invasion. Brazilian Journal of Botany, 37, 239–250. DOI: doi.org/10.1007/s40415-014-0076-z

Bao, F., Assis, M. A., Arruda, R., & Pott, A. 2015. Effects of Urochloa humidicola on plant diversity in native grasslands in a Neotropical wetland. Wetlands, 35, 841–850. DOI: 10.1007/s13157-015-0673-z

Bao, F., Elsey-Quirk, T., Assis, M. A., & Pott, A. 2017. Seed bank of seasonally flooded grassland: experimental simulation of flood and post-flood. Aquatic Ecology, 50, 1–13. DOI: doi.org/10.1007/s10452-017-9647-y

Bao, F., Elsey-Quirk, T., Assis, M.A., Arruda, R., & Pott, A. 2018. Seasonal flooding, topography, and organic debris in interact to influence the emergence and distribution of seedlings in a tropical grassland. Biotropica 1, 1–9. DOI: 10.1111/btp.12550

Bao, F., Elsey-Quirk, T., Assis, M.A., Souza, E.B., & Pott, A. 2020. Do aquatic macrophytes limit the invasion potential of exotic species in Pantanal grassland? Wetlands, 40, 135–142. DOI: doi.org/10.1007/s13157-019-01168-5

Baskin, C. C., Baskin, J. M., & Chester, E. W. 2019. Long-term persistence of summer annuals in soil seed banks of seasonally dewatered mudflats. Plant Ecology, 220, 731–740. DOI: doi.org/10.1007/s11258-019-00948-7

Bell, D. M., & Clarke, P. J. 2004. Seed-bank dynamics of Eleocharis: can spatial and temporal variability explain habitat segregation? Australian Journal of Botany, 52, 119–131. DOI: 10.1071/BT03024

Bernhardt, K. G., Koch, M., Kropf, M., Ulbel, E., & Webhofer, J. 2008. Comparison of two methods characterising the seed bank of amphibious plants in submerged sediments. Aquatic Botany, 88, 171–177. DOI: doi.org/10.1016/j.aquabot.2007.10.004

Boedeltje, G., Heerdt, G. N. J., & Bakker, J. P. 2002. Applying the seedling-emergence method under waterlogged conditions to detect the seed bank of aquatic plants in submerged sediments. Aquatic Botany, 72, 121–128. DOI: doi.org/10.1016/S0304-3770(01)00224-8

Bonis, A., Lepart, J., & Grillas, P. 1995. Seed bank dynamics and coexistence of annual macrophytes in temporary and variable habitat. Oikos 74, 81–92. DOI: 10.2307/3545677

Bornette, G., & Puijalon, S. 2009. Macrophytes: Ecology of Aquatic Plants. In: Encyclopedia of Life Sciences. pp. 1–9 Chichester: John Wiley & Sons, ltd. DOI: 10.1002/9780470015902.a0020475

Boutin, S., Wauters, L. A., McAdam, A. G., Humphries, M. M., Tosi, G., & Dhondt, A. A. 2006. Anticipatory reproduction and population growth in seed predators. Science 314, 1928–1930. DOI: 10.1126/science.1135520

Brewer, C. A., & Parker, M. 1990. Adaptations of macrophytes to life in moving water: upslope limits and mechanical properties of stems. Hydrobiologia 194, 133–142. DOI: doi.org/10.1007/BF00028414

Brock, M. A. 1994. Aquatic vegetation of inland wetlands. In: Groves, R. H. (Ed.). Australian Vegetation. pp. 437-466. Cambridge University Press.

Brock, M. A., Nielsen, D. L., Shiel, R. J., Green, J. D., & Langley, J. D. 2003. Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands. Freshwater Biology 48, 1207–1218. DOI: 10.1046/j.1365-2427.2003.01083.x

Brock, M. A. 2011. Persistence of seed banks in Australian temporary wetlands. Freshwater Biology 56, 1312–1327. DOI:10.1111/j.1365-2427.2010.02570.x

Butler, B. J., & Chazdon, R. L. 1998. Species Richness, spatial variation, and abundance of the soil seed bank of a secondary tropical rain forest. Biotropica 30, 214–222. DOI: doi.org/10.1111/j.1744-7429. 1998.tb00056.x

Capon, S. J. 2007. Effects of flooding on seedling emergence from the soil seed bank of a large desert floodplain. Wetlands 27, 904–914. DOI: 10.1672/0277-5212(2007)27%5B904:EOFOSE%5D2.0.CO;2

Combroux, I. C., Bornette, G., & Amoros, C. 2002. Plant regenerative strategies after a major disturbance: the case of a riverine wetland restoration. Wetlands 22, 234–246. DOI: doi.org/10.1672/0277-5212(2002)022[0234:PRSAAM]2.0.CO;2

Crawley, M. J. 2000. Seed predators and plant population dynamics. In: Fenner, M. (Ed.). Seeds: the ecology of regeneration in plant communities. pp. 167-182. CABI. DOI: 10.1079/9780851994321.0167

Deepayan S. 2008. Lattice: Multivariate Data Visualization with R. Springer, New York. ISBN 978-0-387-75968-5

Farnsworth, E. J., & Bazzaz, F. A. 1995. Inter-and intra-generic differences in growth, reproduction, and fitness of nine herbaceous annual species grown in elevated CO2 environments. Oecologia 104, 454–466. DOI: 10.1007/BF00341343.

Gil, A. S. B., & Bove, C. P. 2006. Eleocharis R. Br. (Cyperaceae) no estado do Rio de Janeiro, Brasil. Biota Neotropica 7, 163–193. DOI: doi.org/10.1590/S1676-06032007000100020.

Greulich, S., Richard, C., & Marc, V. 2019. Soil seed banks in the floodplain of a large river: A test of hypotheses on seed bank composition in relation to flooding and established vegetation. Journal of Vegetation Science 30, 732–745. DOI: doi.org/10.1111/jvs.12762

Growth, D. 1983. Estudo morfológico das unidades de dispersão e respectivas plantas de seis espécies invasoras da família Cyperaceae. Planta Daninha 5, 25–38. DOI: doi.org/10.1590/S0100-83581983000100005

Guan, B., Chen, M., Elsey-Quirk, T., Yang, S., Shang, W., Li, Y., Tian, X & Han, G. 2019. Soil seed bank and vegetation differences following channel diversion in the Yellow River Delta. Science of the Total Environment 693, 133600. DOI: doi.org/10.1016/j.scitotenv.2019.133600

Harper, J. L. 1977. Population biology of plants. Population biology of plants. London: Academic Press: p. 857.

Hölzel, N., & Otte, A. 2001. The impact of flooding regime on the soil seed bank of flood-meadows. Journal Vegetation of Science 12, 209–218. DOI: 10.2307/3236605

Jarman, N. M., Dobberteen, R. A., Windmiller, B., & Lelito, P. R. 1991. Authenticity: evaluation of created freshwater wetlands in Massachusetts. Ecological Restoration 9, 26–29.

Kaul, R. B. 1978. Morphology of germination and establishment of aquatic seedlings in Alismataceae and Hydrocharitaceae. Aquatic Botany 5, 139–147. DOI: doi.org/10.1016/0304-3770(78)90057-8

Kaul, R. B. 1985. Reproductive phenology and biology in annual and perennial Alismataceae. Aquatic Botany 22, 153–164. DOI: doi.org/10.1016/0304-3770(85)90044-0

Kindt, R., & Coe, R. 2005. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi, p. 203.

Kissmann, K. G., & Growth, D. 1997. Plantas infestantes e nocivas. Tomo I, 2ªed. São Paulo: BASF, p. 824.

Kissmann, K. G., & Groth D. 1992. Plantas infestantes e nocivas. Tomo II, 2ªed. São Paulo: BASF, p. 798.

Kissmann, K. G., & Groth, D. 1995. Plantas infestantes e nocivas. Tomo III, 2ªed. São Paulo: BASF, p. 683.

Kohagura, T. D. C., Souza, E. B. D., Bao, F., Ferreira, F. A., & Pott, A. 2020. Flood and fire affect the soil seed bank of riparian forest in the Pantanal wetland. Rodriguésia 71, e00052018. DOI: doi.org/10.1590/2175-7860202071013

Leck, M. A., & Simpson, R. L., 1987. Seed bank of a freshwater tidal wetland: turnover and relationship to vegetation change. American Journal of Botany 74, 360–370. DOI: 10.2307/2443812

Mcfarland, D. G., & Shafer, D. J. 2011. Protocol considerations for aquatic plant seed bank assessment. Journal of Aquatic Plant Management 49, 9–19.

Oksanen, J. F., Blanchet, G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E. & Wagner, Z. H. 2017. Vegan: Community Ecology Package. R package version 2, 4–3. https://CRAN.R-project.org/package=vegan

Oliveira, P. C., Torezan, J. M., & Nunes da Cunha, C. 2015. Effects of flooding on the spatial distribution of soil seed and spore banks of native grasslands of the Pantanal wetland. Acta Botanica Brasilica 29, 400–407. DOI: dx.doi.org/10.1590/0102-33062015abb0027

Pott, A., & Pott, V. J. 1994. Plantas do Pantanal. Brasília. EMBRAPA, Corumbá. p. 320.

Pott, V. J., & Pott, A. 2000. Plantas aquáticas do Pantanal. EMBRAPA, Corumbá. p. 353.

Pott, A., & Silva, J. S. V. 2015. Terrestrial and aquatic vegetation diversity of the Pantanal Wetland. In: Bergier, I. & Assine M. L. (Eds.). Dynamics of the Pantanal Wetland in South America. pp. 111-151. Springer International Publishing Switzerland.

R core team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.r-project.org/about.html

Sanou, L., Savadogo, P., Zida, D., & Thiombiano, A. 2019. Contrasting land use systems influence soil seed bank composition and density in a rural landscape mosaic in West Africa. Flora, 250, 79–90. DOI: doi.org/10.1016/j.flora.2018.11.013

Silva, J. S. V. & Abdon, M, M. 1998. Delimitação do Pantanal Brasileiro e suas sub regiões. Pesquisa Agropecuária Brasileira 33, 1703–1711.

Simpson, R. L., Leck, M. A. & Parker, V. T. 1989. Seed banks: general concepts and methodological issues. In: Leck, M. A., Parker, V. T. & Simpson, R. L. (Eds.). Ecology of Soil Seed Banks. pp. 3-9. San Diego: Academic Press.

Simpson, G. L. 2016. Permute: Functions for Generating Restricted Permutations of Data. R package version 0.9-4. URL CRAN.R-project.org/package=permute

Solbreck, C., & Knape, J. 2017. Seed production and predation in a changing climate: new roles for resource and seed predator feedback? Ecology 98, 2301–2311. DOI: doi.org/10.1002/ecy.1941

Souza, D. K. L., & Giulietti, A. M. 2014. Flora da Bahia: Pontederiaceae. Sitientibus-série Ciências Biológicas 14, 1–10.

Souza, E. B., Ferreira, F. A., & Pott, A. 2016. Effects of flooding and its temporal variation on seedling recruitment from the soil seed bank of a Neotropical floodplain. Acta Botanica Brasilica 31, 64–75. DOI: doi.org/10.1590/0102-33062016abb0202

Thompson, K., Grime, J. P., & Mason, G. 1977. Seed germination in response to diurnal fluctuations of temperature. Nature 267, 147–149. DOI: doi.org/10.1038/267147a0

Thompson, K., Bakker, J. P. & Bekker, R. M. 1997. The soil seed banks of North West Europe: methodology, density, and longevity. Cambridge University Press, Cambridge, UK. p. 267.

Tuckett, R. E., Merritt, D. J., Hay, F. R., Hopper, S. D., & Dixon, K. W. 2010. Dormancy, germination, and seed bank storage: a study in support of ex situ conservation of macrophytes of southwest Australian temporary pools. Freshwater Biology 55, 1118–1129. DOI: doi.org/10.1111/j.1365-2427.2010. 02386.x

Yang, W. 2020. Assessment of Health Status of Lake Wetland by Vegetation-Based Index of Biotic Integrity (V-IBI). In: Wang, Y. (Ed.). Wetlands and Habitats. pp. 213–223. Boca Raton: CRC Press.

van der Valk, A. G., & Davis, C. B. 1978. The role of seed banks in the vegetation dynamics of prairie glacial marshes. Ecology 59, 322–335.

Publicado

2021-03-15