Study on Biocompatible Polymeric Carriers Used in the Treatment of Tuberculosis
DOI:
https://doi.org/10.55747/bjedis.v4i2.69648Keywords:
Mycobacterium tuberculosis; tuberculosis; biopolymers; biocompatible polymers; nanoparticles; microparticles; delivery system; antibioticsAbstract
Abstract: Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis, which requires oral treatment with
antibiotics. In uncomplicated cases, the RIPE regimen is used, consisting of rifampicin, isoniazid, pyrazinamide, and ethambutol.
However, complex clinical situations require the inclusion of other drugs. This therapeutic approach can, therefore, trigger
adverse effects such as nausea, vomiting, and changes in skin, eye, and urine color. In this context, polymeric systems act as
carriers and release modulators, thereby promoting the selective targeting of drugs to target cells and enhancing their efficacy.
Furthermore, this study investigates advances in research on polymeric carriers applied to the treatment of tuberculosis through
a bibliometric analysis and a brief literature review, with an emphasis on pulmonary delivery systems, characterization
techniques, in vitro and in vivo assays, and cytotoxicity assessment. Ultimately, the survey highlights promising strategies based
on biocompatible polymeric carriers administered by inhalation, which mitigate adverse effects and promote adherence to
treatment.
Downloads
References
1. WORLD HEALTH ORGANIZATION. Global tuberculosis report 2019 [online]. World Health Organization : Geneva, 2019. Accessed 29 July 2025. WHO/CDS/TB/2019.15. ISBN 978-92-4-156571-4. Available from: https://iris.who.int/handle/10665/329368.
2. BRUM, Nicolle Fernanda Dias, MUSSI, Thais de Carvalho, AZEVEDO, Aline Damico de, MONTEIRO, Silvana Gino and JÚNIOR, Fernando Gomes de Souza. Caracterização Físico-Química de Medicamentos de Referência para o Tratamento da Tuberculose usando Espectroscopia de Infravermelho com Transformada de Fourier (FTIR) e Análise Térmica (TG/DTG & DSC). BIOFARM - Journal of Biology & Pharmacy and Agricultural Management. v. 17, n. 4, p. 963–975. 2021.
3. OMS. Global Tuberculosis Report 2024. 1st ed. World Health Organization : Geneva, 2024. ISBN 978-92-4-010153-1.
4. OLIVEIRA, Andrey Carvalho de Oliveira Carvalho de, BRUM, Nicolle Fernanda Dias, AZEVDO, Aline Damico de and JÚNIOR, Fernando Gomes de Souza. POLÍMEROS E SUAS TECNOLOGIAS ASSOCIADAS AO TRATAMENTO DA TUBERCULOSE: REVISÃO BIBLIOMÉTRICA E BIBLIOGRÁFICA. BIOFARM - Journal of Biology & Pharmacy and Agricultural Management. v. 20, n. 1, p. 238–262. 2025. DOI 10.18391/biofarm.v20i1.4698.
5. OPAS. Tuberculose ressurge como principal causa de morte por doença infecciosa nas Américas [online]. Brasília, 2024. Available from: https://www.paho.org/pt/noticias/1-11-2024-tuberculose-ressurge-como-principal-causa-morte-por-doenca-infecciosa.
6. BRASIL. Boletim Epidemiológico – Tuberculose/2020 [online]. Brasil, 2020. Available from: https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/boletins/epidemiologicos/especiais/2020/boletim-tuberculose-2020-marcas-1.pdf.
7. RABAHI, Marcelo Fouad, SILVA JÚNIOR, José Laerte Rodrigues Da, FERREIRA, Anna Carolina Galvão, TANNUS-SILVA, Daniela Graner Schuwartz and CONDE, Marcus Barreto. Tuberculosis treatment. Jornal Brasileiro de Pneumologia. v. 43, n. 6, p. 472–486. 2017. DOI 10.1590/s1806-37562016000000388.
8. DE OLIVEIRA, Andrey Carvalho, BRUM, Nicolle Fernanda Dias, DE AZEVEDO, Aline Damico and SOUZA JUNIOR, Fernando Gomes de. PANORAMA BIBLIOMÉTRICO DA APLICAÇÃO DE POLÍMEROS NO TRATAMENTO DA TUBERCULOSE. I Feira de Farmácia, Biotecnologia e Desenvolvimento Farmacêutico. v. 1, p. 15. 2025. DOI 10.5281/zenodo.15743019.
9. AZNAR, María Luisa, RANDO SEGURA, Ariadna, MORENO, María Milagros, ESPASA, Mateu, SULLEIRO, Elena, BOCANEGRA, Cristina, GIL OLIVAS, Eva, EUGÉNIO, Arlete Nindia, ZACARIAS, Adriano, KATIMBA, Domingos, GABRIEL, Estevao, MENDIOROZ, Jacobo, LÓPEZ GARCÍA, Maria Teresa, PUMAROLA, Tomas, TÓRTOLA, María Teresa and MOLINA, Israel. Treatment Outcomes and Adverse Events from a Standardized Multidrug-Resistant Tuberculosis Regimen in a Rural Setting in Angola. The American Journal of Tropical Medicine and Hygiene. v. 101, n. 3, p. 502–509. 2019. DOI 10.4269/ajtmh.19-0175.
10. GUALANO, Gina, MENCARINI, Paola, MUSSO, Maria, MOSTI, Silvia, SANTANGELO, Laura, MURACHELLI, Silvia, CANNAS, Angela, DI CARO, Antonino, NAVARRA, Assunta, GOLETTI, Delia, GIRARDI, Enrico and PALMIERI, Fabrizio. Putting in harm to cure: Drug related adverse events do not affect outcome of patients receiving treatment for multidrug-resistant Tuberculosis. Experience from a tertiary hospital in Italy. DE SOCIO, Giuseppe Vittorio (ed.), PLOS ONE. v. 14, n. 2, p. e0212948. 2019. DOI 10.1371/journal.pone.0212948.
11. NINGRUM, Trisiwi Kusuma and RAHMI, Mailur. DESKRIPSI EFEK SAMPING OBAT ANTI TB PADA PASIEN TB YANG SEDANG MENJALANI PENGOBATAN TB DI PUSKESMAS HARAPAN RAYA PEKANBARU. Jurnal Keperawatan Abdurrab. v. 4, n. 1, p. 60–65. 2020. DOI 10.36341/jka.v4i1.1298.
12. KHASANAH, Heti Rais, PUDIARIFANTI, Nadia, BAHARYATI, Delta, MELIYARTA, Elda and NURUL INAYAH, Azizah. IDENTIFICATION OF SIDE EFFECTS OF USE OF ANTI TUBERCULOSIS DRUGS IN PADANG SERAI AND TELAGA DEWA HEALTH CENTERS BENGKULU CITY 2024. Avicenna: Jurnal Ilmiah. v. 19, n. 3, p. 190–199. 2025. DOI 10.36085/avicenna.v19i3.7452.
13. BRUM, Nicolle Fernanda Dias, MARTINS, Gustavo Reis, DE OLIVEIRA, Andrey Carvalho, DE AZEVEDO, Aline Damico and SOUZA JÚNIOR, Fernando Gomes de. ANÁLISE BIBLIOMÉTRICA: POLÍMEROS NO TRATAMENTO DA TUBERCULOSE. I Feira de Farmácia, Biotecnologia e Desenvolvimento Farmacêutico. v. 1, p. 10. 2025. DOI 10.5281/zenodo.15778376.
14. BRUNTON, Laurence. As Bases farmacológicas da terapêutica de Goodman & Gilman. 13. Artmed : Porto Alegre, 2019.
15. GAJENDIRAN, Mani, JO, Heejung, KIM, Kyobum and BALASUBRAMANIAN, Sengottuvelan. In vitro controlled release of tuberculosis drugs by amphiphilic branched copolymer nanoparticles. Journal of Industrial and Engineering Chemistry. v. 77, p. 181–188. 2019. DOI 10.1016/j.jiec.2019.04.033.
16. SINGH, Amit K., VERMA, Rahul K., MUKKER, Jatinder Kaur, YADAV, Awadh B., MUTTIL, Pavan, SHARMA, Rolee, MOHAN, Mradul, AGRAWAL, Atul K., GUPTA, Anuradha, DWIVEDI, Anil K., GUPTA, Pushpa, GUPTA, Umesh D., MANI, Uthirappan, CHAUDHARI, Bhushan P., MURTHY, Ramesh C., SHARMA, Sharad, BHADAURIA, Smrati, SINGH, Sarika, et al. Inhalable particles containing isoniazid and rifabutin as adjunct therapy for safe, efficacious and relapse-free cure of experimental animal tuberculosis in one month. Tuberculosis. v. 128, p. 102081. 2021. DOI 10.1016/j.tube.2021.102081.
17. DRAGOSTIN, Ionut, DRAGOSTIN, Oana-Maria, IACOB, Andreea Teodora, DRAGAN, Maria, CHITESCU, Carmen Lidia, CONFEDERAT, Luminita, ZAMFIR, Alexandra-Simona, TATIA, Rodica, STAN, Catalina Daniela and ZAMFIR, Carmen Lacramioara. Chitosan Microparticles Loaded with New Non-Cytotoxic Isoniazid Derivatives for the Treatment of Tuberculosis: In Vitro and In Vivo Studies. Polymers. v. 14, n. 12, p. 2310. 2022. DOI 10.3390/polym14122310.
18. MUSSI, Thais, BRUM, Nicolle, DE AZEVEDO, Aline and SOUZA JÚNIOR, Fernando. APPLICATION OF EXPERIMENTAL DESIGN FOR POLY(BUTYLENE SUCCINATE) SYNTHESIS AND OBTAINING RIFAMPICIN-LOADED MICROPARTICLES. BIOFARM. v. 17, p. 1066–1076. 2021.
19. PANDEY, Rajesh and AHMAD, Zahoor. Nanomedicine and experimental tuberculosis: facts, flaws, and future. Nanomedicine: Nanotechnology, Biology and Medicine. v. 7, n. 3, p. 259–272. 2011. DOI 10.1016/j.nano.2011.01.009.
20. BRUM, Nicolle, OLIVEIRA, Andrey, AZEVEDO, Aline and SOUZA JÚNIOR, Fernando. ESTADO DA ARTE SOBRE POLÍMEROS USADOS NO TRATAMENTO DA TUBERCULOSE: UMA ANÁLISE BIBLIOMÉTRICA. Livros de anais: BIOFARM. 2025.
21. AHMAD, Firoz, AHMAD, Shad, UPADHYAY, Tarun Kumar, SINGH, Sanjay, KHUBAIB, Mohd, SINGH, Jyotsna, SAEED, Mohd, AHMAD, Irfan, AL-KERIDIS, Lamya Ahmed and SHARMA, Rolee. Rifabutin loaded inhalable β-glucan microparticle based drug delivery system for pulmonary TB. Scientific Reports. v. 14, n. 1, p. 16437. 2024. DOI 10.1038/s41598-024-66634-5.
22. MARTINS, Gustavo R., RODRIGUES, Elton Jorge R. and TAVARES, Maria Inês B. The invisible world of nanoplastics: bibliometric analysis on nanoplastics and study of their adsorption capacity. Anais da Academia Brasileira de Ciências. v. 97, n. suppl 3, p. e20240922. 2025. DOI 10.1590/0001-3765202520240922.
23. DINANTI, Finisha Prigestiya, ERAWATI, Tristiana and HARIYADI, Dewi Melani. Development of Inhaled Tuberculosis Microparticle using Polysaccharide Polymers Containing Rifamycin Groups: In-vitro and In-vivo Study. INTERNATIONAL JOURNAL OF DRUG DELIVERY TECHNOLOGY. v. 14, n. 02, p. 1116–1123. 2024. DOI 10.25258/ijddt.14.2.77.
24. RANI, Yotomi Desia Eka, RAHMADI, Mahardian and HARIYADI, Dewi Melani. Development of natural polymers-based inhaled microspheres for tuberculosis. Pharmacy Education. v. 24, n. 3, p. 123–128. 2024. DOI 10.46542/pe.2024.243.123128.
25. MINISTÉRIO DA SAÚDE and SECRETARIA DE VIGILÂNCIA EM SAÚDE. Boletim Epidemiológico – Tuberculose/2025 [online]. [no date]. Available from: https://www.gov.br/aids/pt-br/central-de-conteudo/boletins-epidemiologicos/2025/boletim-epidemiologico-tuberculose-2025.
26. WORLD HEALTH ORGANIZATION. Tuberculose na Índia 2025 [online]. Geneva, [no date]. Available from: https://www.who.int/news-room/fact-sheets/detail/tuberculosis.
27. GORAIN, Bapi, CHOUDHURY, Hira, PATRO SISINTHY, Sreenivas and KESHARWANI, Prashant. Polymeric micelle-based drug delivery systems for tuberculosis treatment. In : Nanotechnology Based Approaches for Tuberculosis Treatment [online]. Elsevier, 2020. p. 175–191. Accessed 29 July 2025. ISBN 978-0-12-819811-7. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128198117000114.
28. DE CASTRO, Renata Ribeiro, DO CARMO, Flavia Almada, MARTINS, Cláudia, SIMON, Alice, DE SOUSA, Valeria Pereira, RODRIGUES, Carlos Rangel, CABRAL, Lucio Mendes and SARMENTO, Bruno. Clofazimine functionalized polymeric nanoparticles for brain delivery in the tuberculosis treatment. International Journal of Pharmaceutics. v. 602, p. 120655. 2021. DOI 10.1016/j.ijpharm.2021.120655.
29. USHARANI, Nagarajan, KANTH, Swarna Vinodh and SARAVANAN, Natarajan. Current nanotechnological strategies using lipids, carbohydrates, proteins and metal conjugates-based carrier systems for diagnosis and treatment of tuberculosis — A review. International Journal of Biological Macromolecules. v. 227, p. 262–272. 2023. DOI 10.1016/j.ijbiomac.2022.12.087.
30. LEITE, Joandra Maísa da Silva, OLIVEIRA, Antônia Carla de Jesus, DOURADO, Douglas, SANTANA, Lucas Marinho de, MEDEIROS, Thayse Silva, NADVORNY, Daniela, SILVA, Marina Luiza Rocha, ROLIM-NETO, Pedro José, MOREIRA, Diogo Rodrigo Magalhães, FORMIGA, Fábio Rocha, SOARES, Mônica Felts de La Roca and SOARES-SOBRINHO, José Lamartine. Rifampicin-loaded phthalated cashew gum nano-embedded microparticles intended for pulmonary administration. International Journal of Biological Macromolecules. v. 303, p. 140693. 2025. DOI 10.1016/j.ijbiomac.2025.140693.
31. VISHWA, Bhavya, MOIN, Afrasim, GOWDA, D. V., RIZVI, Syed M. D., HEGAZY, Wael A. H., ABU LILA, Amr S., KHAFAGY, El-Sayed and ALLAM, Ahmed N. Pulmonary Targeting of Inhalable Moxifloxacin Microspheres for Effective Management of Tuberculosis. Pharmaceutics. v. 13, n. 1, p. 79. 2021. DOI 10.3390/pharmaceutics13010079.
32. LIM, Seng Han, PARK, Sol, LEE, Chun Chuan, HO, Paul Chi Lui, KWOK, Philip Chi Lip and KANG, Lifeng. A 3D printed human upper respiratory tract model for particulate deposition profiling. International Journal of Pharmaceutics. v. 597, p. 120307. 2021. DOI 10.1016/j.ijpharm.2021.120307.
33. CARRYN, Stéphane, CHANTEUX, Hugues, SERAL, Cristina, MINGEOT-LECLERCQ, Marie-Paule, VAN BAMBEKE, Françoise and TULKENS, Paul M. Intracellular pharmacodynamics of antibiotics. Infectious Disease Clinics of North America. v. 17, n. 3, p. 615–634. 2003. DOI 10.1016/S0891-5520(03)00066-7.
34. PEREIRA, Debora Lopes Emerich, BRUM, Nicolle Fernanda Dias, DIAS, Laura Batista, SOUZA, Liz Ragazzi and AZEVEDO, Yasmin Barros. ESTADO DA ARTE DE POLÍMEROS UTILIZADOS COMO CARREADORES DE FÁRMACOS. I Feira de Farmácia, Biotecnologia e Desenvolvimento Farmacêutico. v. 1, p. 3. 2025. DOI 10.5281/zenodo.15742516.
35. RYU, Suji, PARK, Seungyeop, LEE, Ha Yeon, LEE, Hyungjun, CHO, Cheong-Weon and BAEK, Jong-Suep. Biodegradable Nanoparticles-Loaded PLGA Microcapsule for the Enhanced Encapsulation Efficiency and Controlled Release of Hydrophilic Drug. International Journal of Molecular Sciences. v. 22, n. 6, p. 2792. 2021. DOI 10.3390/ijms22062792.
36. NAZ, Faiqa Falak, SHAH, Kifayat Ullah, NIAZI, Zahid Rasul, ZAMAN, Mansoor, LIM, Vuanghao and ALFATAMA, Mulham. Polymeric Microparticles: Synthesis, Characterization and In Vitro Evaluation for Pulmonary Delivery of Rifampicin. Polymers. v. 14, n. 12, p. 2491. 2022. DOI 10.3390/polym14122491.
37. SHARMA, Ankur, GAUR, Aparna, KUMAR, Vimal, SHARMA, Neelesh, PATIL, Shripad A., VERMA, Rahul Kumar and SINGH, Amit Kumar. Antimicrobial activity of synthetic antimicrobial peptides loaded in poly-Ɛ-caprolactone nanoparticles against mycobacteria and their functional synergy with rifampicin. International Journal of Pharmaceutics. v. 608, p. 121097. 2021. DOI 10.1016/j.ijpharm.2021.121097.
38. GALIYEVA, Aldana, DARIBAY, Arailym, TABRIZ, Nurlan and TAZHBAYEV, Yerkeblan. Production of Polylactide Nanoparticles Loaded With Isoniazid and Vitamin C: A Promising Candidate for the Treatment of Resistant Forms of Tuberculosis. Journal of Polymer Science. P. pol.20240375. 2024. DOI 10.1002/pol.20240375.
39. TAZHBAYEV, Yerkeblan, GALIYEVA, Aldana, ZHUMAGALIYEVA, Tolkyn, BURKEYEV, Meiram and KARIMOVA, Bakhytgul. Isoniazid—Loaded Albumin Nanoparticles: Taguchi Optimization Method. Polymers. v. 13, n. 21, p. 3808. 2021. DOI 10.3390/polym13213808.
40. MARENGO, Robinson C., MENGATTO, Luciano N., OLIVARES, María L. and BERLI, Claudio L.A. Microfluidics-based encapsulation of isoniazid in egg white/carrageenan microparticles for sustained release. Food Hydrocolloids for Health. v. 1, p. 100041. 2021. DOI 10.1016/j.fhfh.2021.100041.
41. CHEN, Cheng-Cheung, CHEN, Yih-Yuan, YEH, Chang-Ching, HSU, Chia-Wei, YU, Shang-Jie, HSU, Chih-Hao, WEI, Ting-Chun, HO, Sin-Ni, TSAI, Pei-Chu, SONG, Yung-Deng, YEN, Hui-Ju, CHEN, Xin-An, YOUNG, Jenn-Jong, CHUANG, Chuan-Chung and DOU, Horng-Yunn. Alginate-Capped Silver Nanoparticles as a Potent Anti-mycobacterial Agent Against Mycobacterium tuberculosis. Frontiers in Pharmacology. v. 12, p. 746496. 2021. DOI 10.3389/fphar.2021.746496.
42. HAKKIMANE, Sushruta, SHENOY, Vishnu Prasad, GAONKAR, Santosh, BAIRY, Indira and GURU, Bharath Raja. Antimycobacterial susceptibility evaluation of rifampicin and isoniazid benz-hydrazone in biodegradable polymeric nanoparticles against Mycobacterium tuberculosis H37Rv strain. International Journal of Nanomedicine. v. Volume 13, p. 4303–4318. 2018. DOI 10.2147/IJN.S163925.
43. AMARNATH PRAPHAKAR, Rajendran, MUNUSAMY, Murugan A., SADASIVUNI, Kishor Kumar and RAJAN, Mariappan. Targeted delivery of rifampicin to tuberculosis-infected macrophages: design, in-vitro, and in-vivo performance of rifampicin-loaded poly(ester amide)s nanocarriers. International Journal of Pharmaceutics. v. 513, n. 1–2, p. 628–635. 2016. DOI 10.1016/j.ijpharm.2016.09.080.
44. NIEWOLIK, Daria, BEDNARCZYK-CWYNAR, Barbara, RUSZKOWSKI, Piotr, KAZEK-KĘSIK, Alicja, DZIDO, Grzegorz and JASZCZ, Katarzyna. Biodegradable and Bioactive Carriers Based on Poly(betulin disuccinate-co-sebacic Acid) for Rifampicin Delivery. Pharmaceutics. v. 14, n. 3, p. 579. 2022. DOI 10.3390/pharmaceutics14030579.
45. LOGANATHAN, Sravanthi, VALAPA, Ravi Babu, MISHRA, Raghvendra Kumar, PUGAZHENTHI, G. and THOMAS, Sabu. Thermogravimetric Analysis for Characterization of Nanomaterials. In : Thermal and Rheological Measurement Techniques for Nanomaterials Characterization [online]. Elsevier, 2017. p. 67–108. Accessed 29 July 2025. ISBN 978-0-323-46139-9. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780323461399000049.
46. ALZATE, Manuela, GAMBA, Oscar, DAZA, Carlos, SANTAMARIA, Alexander and GALLEGO, Jaime. Iron/multiwalled carbon nanotube (Fe/MWCNT) hybrid materials characterization: thermogravimetric analysis as a powerful characterization technique. Journal of Thermal Analysis and Calorimetry. v. 147, n. 22, p. 12355–12363. 2022. DOI 10.1007/s10973-022-11446-w.
47. ALVES, Carine Tondo, PETERS, Morenike A. and ONWUDILI, Jude A. Application of thermogravimetric analysis method for the characterisation of products from triglycerides during biodiesel production. Journal of Analytical and Applied Pyrolysis. v. 168, p. 105766. 2022. DOI 10.1016/j.jaap.2022.105766.
48. BRUM, Nicolle, MUSSI, Thais, AZEVEDO, Aline, MONTEIRO, Silvana and SOUZA JÚNIOR, Fernando. Phisical-Chemical Characterization of References Drugs For the Treatment of Tuberculosis using Fourier Transform Infrared Spectroscopy (FTIR) and Thermal Anlysis (TG/DTG & DSC). BIOFARM. P. 963–975. 2021.
49. GHANBARI, Elmira, PICKEN, Stephen J. and VAN ESCH, Jan H. Analysis of differential scanning calorimetry (DSC): determining the transition temperatures, and enthalpy and heat capacity changes in multicomponent systems by analytical model fitting. Journal of Thermal Analysis and Calorimetry. v. 148, n. 22, p. 12393–12409. 2023. DOI 10.1007/s10973-023-12356-1.
50. JUDAT, Bernd and KIND, Matthias. Morphology and internal structure of barium sulfate—derivation of a new growth mechanism. Journal of Colloid and Interface Science. v. 269, n. 2, p. 341–353. 2004. DOI 10.1016/j.jcis.2003.07.047.
51. VEDULA, Ganesh. An Investigation of Diesel PM Particle Morphology Using TEM and SEM [online]. MS. West Virginia University Libraries, 2011. Accessed 29 July 2025. Available from: https://researchrepository.wvu.edu/etd/4809.
52. ALVAREZ, Juan, SAUDINO, Giovanni, MUSTEATA, Valentina, MADHAVAN, Poornima, GENOVESE, Alessandro, BEHZAD, Ali Reza, SOUGRAT, Rachid, BOI, Cristiana, PEINEMANN, Klaus-Viktor and NUNES, Suzana P. 3D Analysis of Ordered Porous Polymeric Particles using Complementary Electron Microscopy Methods. Scientific Reports. v. 9, n. 1, p. 13987. 2019. DOI 10.1038/s41598-019-50338-2.
53. HOCHSTRASSER, Janika, JUÈRE, Estelle, KLEITZ, Freddy, WANG, Wu, KÜBEL, Christian and TALLAREK, Ulrich. Insights into the intraparticle morphology of dendritic mesoporous silica nanoparticles from electron tomographic reconstructions. Journal of Colloid and Interface Science. v. 592, p. 296–309. 2021. DOI 10.1016/j.jcis.2021.02.069.
54. SINHA, Ankur, ISCHIA, Gloria, STRAFFELINI, Giovanni and GIALANELLA, Stefano. A new sample preparation protocol for SEM and TEM particulate matter analysis. Ultramicroscopy. v. 230, p. 113365. 2021. DOI 10.1016/j.ultramic.2021.113365.
55. GURNANI, Pratik, LUNN, Andrew M. and PERRIER, Sébastien. Synthesis of mannosylated and PEGylated nanoparticles via RAFT emulsion polymerisation, and investigation of particle-lectin aggregation using turbidimetric and DLS techniques. Polymer. v. 106, p. 229–237. 2016. DOI 10.1016/j.polymer.2016.08.093.
56. WILSON, Brian K. and PRUD’HOMME, Robert K. Nanoparticle size distribution quantification from transmission electron microscopy (TEM) of ruthenium tetroxide stained polymeric nanoparticles. Journal of Colloid and Interface Science. v. 604, p. 208–220. 2021. DOI 10.1016/j.jcis.2021.04.081.
57. LEITE, Joandra Maísa Da Silva, SANTANA, Lucas Marinho De, NADVORNY, Daniela, ABREU, Brenda Oliveira De, REBOUÇAS, Juliana De Souza, FORMIGA, Fabio Rocha, SOARES, Mônica Felts De La Roca and SOARES-SOBRINHO, José Lamartine. Nanoparticle design for hydrophilic drugs: Isoniazid biopolymeric nanostructure. Journal of Drug Delivery Science and Technology. v. 87, p. 104754. 2023. DOI 10.1016/j.jddst.2023.104754.
58. OMER, Ahmed M., ZIORA, Zyta M., TAMER, Tamer M., KHALIFA, Randa E., HASSAN, Mohamed A., MOHY-ELDIN, Mohamed S. and BLASKOVICH, Mark A. T. Formulation of Quaternized Aminated Chitosan Nanoparticles for Efficient Encapsulation and Slow Release of Curcumin. Molecules. v. 26, n. 2, p. 449. 2021. DOI 10.3390/molecules26020449.
59. BELLALA, Shirisha, VISWANATHAN, Karthika, GUNTAKANTI, Ujwala, KOWTHALAM, Anitha, HAN, Sung Soo, KUMMARA, Madhusudana, OBIREDDY, Sreekanth Reddy and LAI, Wing-Fu. Composite Microgels Loaded with Doxorubicin-Conjugated Amine-Functionalized Zinc Ferrite Nanoparticles for Stimuli-Responsive Sustained Drug Release. International Journal of Nanomedicine. v. Volume 19, p. 5059–5070. 2024. DOI 10.2147/IJN.S448594.
60. LIN, Qing, LIU, Guijin, ZHAO, Ziyi, WEI, Dongwei, PANG, Jiafeng and JIANG, Yanbin. Design of gefitinib-loaded poly (l-lactic acid) microspheres via a supercritical anti-solvent process for dry powder inhalation. International Journal of Pharmaceutics. v. 532, n. 1, p. 573–580. 2017. DOI 10.1016/j.ijpharm.2017.09.051.
61. AMBRUS, Rita, BENKE, Edit, FARKAS, Árpád, BALÁSHÁZY, Imre and SZABÓ-RÉVÉSZ, Piroska. Novel dry powder inhaler formulation containing antibiotic using combined technology to improve aerodynamic properties. European Journal of Pharmaceutical Sciences. v. 123, p. 20–27. 2018. DOI 10.1016/j.ejps.2018.07.030.
62. BENKE, Edit, FARKAS, Árpád, BALÁSHÁZY, Imre, SZABÓ-RÉVÉSZ, Piroska and AMBRUS, Rita. Stability test of novel combined formulated dry powder inhalation system containing antibiotic: physical characterization and in vitro – in silico lung deposition results. Drug Development and Industrial Pharmacy. v. 45, n. 8, p. 1369–1378. 2019. DOI 10.1080/03639045.2019.1620268.
63. SHIEHZADEH, Farideh, TAFAGHODI, Mohsen, LAAL-DEHGHANI, Majid, MASHHOORI, Faezeh, FAZLY BAZZAZ, Bibi Sedigheh and IMENSHAHIDI, Mohsen. Preparation and Characterization of a Dry Powder Inhaler Composed of PLGA Large Porous Particles Encapsulating Gentamicin Sulfate. Advanced Pharmaceutical Bulletin. v. 9, n. 2, p. 255–261. 2019. DOI 10.15171/apb.2019.029.
64. AKDAG, Yagmur. Nanoparticle-containing lyophilized dry powder inhaler formulations optimized using central composite design with improved aerodynamic parameters and redispersibility. Pharmaceutical Development and Technology. v. 28, n. 1, p. 124–137. 2023. DOI 10.1080/10837450.2023.2166066.
65. FISCHER, Dagmar, LI, Youxin, AHLEMEYER, Barbara, KRIEGLSTEIN, Josef and KISSEL, Thomas. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. v. 24, n. 7, p. 1121–1131. 2003. DOI 10.1016/S0142-9612(02)00445-3.
66. KISELEV, O. I., EROPKINA, E. M., SMIRNOVA, T. D., EROPKIN, M. Iu, IL’INSKAIA, E. V., SUKHININ, V. P., PROCHUKHANOVA, A. P. and ZARUBAEV, V. V. [Evaluation of metabolic parameters in vitro as a model for testing the cytotoxicity of antiviral drugs]. Eksperimental’naia I Klinicheskaia Farmakologiia. v. 69, n. 1, p. 65–70. 2006.
67. NIESYTO, Katarzyna, ŁYŻNIAK, Wiktoria, SKONIECZNA, Magdalena and NEUGEBAUER, Dorota. Biological In Vitro Evaluation of PIL Graft Conjugates: Cytotoxicity Characteristics. International Journal of Molecular Sciences. v. 22, n. 14, p. 7741. 2021. DOI 10.3390/ijms22147741.
68. MARZI, Anne, EDER, Kai Moritz, BARROSO, Álvaro, WÅGBØ, Ane Marit, MØRCH, Ýrr, HATLETVEIT, Anne Rein, VISNES, Torkild, SCHMID, Ruth B., KLINKENBERG, Geir, KEMPER, Björn and SCHNEKENBURGER, Jürgen. Interlaboratory evaluation of a digital holographic microscopy–based assay for label-free in vitro cytotoxicity testing of polymeric nanocarriers. Drug Delivery and Translational Research. v. 12, n. 9, p. 2207–2224. 2022. DOI 10.1007/s13346-022-01207-5.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Brazilian Journal of Experimental Design, Data Analysis and Inferential Statistics

This work is licensed under a Creative Commons Attribution 4.0 International License.
AUTHORS’ DECLARATION AND COPYRIGHT TRANSFER AGREEMENT
The undersigned authors hereby declare that the submitted manuscript is an original work and has not been previously published or submitted, in whole or in part, to any other journal. The authors further commit not to submit this work to any other journal while it is under consideration by BJEDIS.
We affirm that the manuscript is free from plagiarism, and we accept full responsibility for any allegations of academic misconduct that may arise.
By submitting this manuscript, the authors irrevocably transfer all copyrights of the work—including, without limitation, the rights of reproduction, distribution, translation, and public communication in any form or medium—to BJEDIS. Any breach of this agreement may result in legal action in accordance with the Brazilian Copyright Law (Law No. 9.610 of February 19, 1998).
The authors also declare that there are no conflicts of interest related to this work. All sources of financial support have been properly acknowledged in the funding section of the manuscript.
