Semiautomatic Mapping of Center Pivot Irrigated Areas Using Sentinel-2 Images and GEOBIA Approach

Authors

  • Leandro Guimarães Maranha Universidade Federal do Paraná, Departamento de Geomática, Programa de Pós-Graduação em Ciências Geodésicas, Curitiba, PR, Brasil. https://orcid.org/0000-0002-4838-9268
  • Alzir Felippe Buffara Antunes Universidade Federal do Paraná, Departamento de Geomática, Programa de Pós-Graduação em Ciências Geodésicas, Curitiba, PR, Brasil. https://orcid.org/0000-0001-9928-4012

DOI:

https://doi.org/10.11137/1982-3908_2023_46_57987

Keywords:

Shape Descriptors, Circularity Factor, Multiresolution Segmentation

Abstract

Image analysis and feature extraction of remoted sensing data are significant for mapping irrigated agriculture areas as a source of information to improve water management and agricultural planning. This paper presents an image segmented base approach GEOBIA (Geographic Object-Based Image Analysis) to extract irrigated areas by Center Pivot Irrigation System (CPIS). This study suggests a semi-automated recognition of circular patterns for the mapping of irrigated regions by center pivots, using Sentinel -2 MSI images, 10 meters spatial resolution. A set of images from different seasons, humid and dry are used to maximize de CPIS’s occurrence. A multiresolution segmentation method was applied, and a large number of segment-based shape features was extracted and used as input to a feature selection procedure (shape descriptors: Area; Compactness; Circularity Factor; Length/Width; Radius of smallest enclosing ellipse; and Roundness). In addition, another shape descriptor “Circularity Factor” was developed in this research and played an important role during preliminaries classification processes. The accuracy assessment of preliminaries classifications has validated used the Circularity Factor together with the other chosen shape descriptors to reach better results to CPIS’s detection. Furthermore, 86.23% of the CPIS mapped in the classification process is in accordance with the ground truth map. This methodology can be used to map large areas in a relatively short time and provides a tool for monitoring irrigated areas.

References

Albuquerque A.O. de, Carvalho Júnior O.A. de, Carvalho O.L.F. de, Bem P.P. de, Ferreira P.H.G., Moura R.S. de, Silva C.R., Gomes R.A.T., Guimarães R.F. 2020, 'Deep Semantic Segmentation of Center Pivot Irrigation Systems from Remotely Sensed Data', Remote Sensing, vol.12, no. 13, pp. 2159. DOI: 10.3390/rs12132159

Baatz, M., Schape, A. 2000, 'Multiresolution Segmentation: An Optimization Approach for High Quality Multi-Scale Image Segmentation'. In: Strobl, J., Blaschke, T. and Griesbner, G., Eds., Angewandte Geographische Informations-Verarbeitung, XII, Wichmann Verlag, Karlsruhe, Germany, 12-23.

Bégué A., Arvor D., Bellon B., Betbeder J., De Abelleyra D., Ferraz R.P.D., Lebourgeois V., Lelong C., Simões M., Verón S.R. 2018, 'Remote sensing and cropping practices: A review', Remote Sensing, vol. 10, no. 1, pp. 99. DOI: https://doi.org/10.3390/rs10010099

Benz, U.C., Hofmann, P., Willhauck, G., Lingenfelder, I., Heynen, M. 2004, 'Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information', ISPRS Journal of Photogrammetry and Remote Sensing, vol. 58, no. 3–4, pp. 239-258, ISSN 0924-2716. Doi: https://doi.org/10.1016/j.isprsjprs.2003.10.002.

Blaschke T., Hay G.J., Kelly M., Lang S., Hofmann P., Addink E., Feitosa R.Q., Van der Meer F., Van der Werff H., Van Coillie F., Tiede D. 2014, 'Geographic Object-Based Image Analysis - Towards a new paradigm', ISPRS Journal of Photogrammetry and Remote Sensing, vol. 87, no. 1, pp. 180-191. DOI: https://doi.org/10.1016/j.isprsjprs.2013.09.014

Braga, A.L.; Oliveira, J.C.de. 2005, 'Identificação e quantificação de áreas irrigadas por pivô central utilizando imagens CCD/CBERS'. Proceedings of XII Brazilian Symposium on Remote Sensing, Goiânia, Brazil, INPE, vol.53, no. (9), 849–856.

Brasil - (Agência Nacional de Águas – ANA) 2019, Levantamento da Agricultura Irrigada por Pivôs Centrais no Brasil, 2nd ed.; Agência Nacional de Águas (ANA): Brasília, Brasil.

Carvalho, O.L.F. de, Carvalho Júnior, O.A., Albuquerque A.O. de, Bem P.P. de, Silva, C.R., Ferreira, P.H.G., Moura, R.S., Gomes, R.A.T., Guimarães, R.F., Borges, D.L. 2021, 'Instance Segmentation for Large, Multi-Channel Remote Sensing Imagery Using Mask-RCNN and a Mosaicking Approach', Remote sensing, vol. 13, no. 39. https://dx.doi.org/10.3390/rs13010039

Congalton, R.G., Oderwald, R.G., Mead, R.A. 1983, 'Assessing Landsat classification accuracy using discrete multivariate analysis statistical techniques', Photogramm. Eng. Remote Sensing, vol. 49, pp. 1671–1678.

Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A. 2010, 'The PASCAL visual object classes (VOC) challenge', IJCV, vol. 88, pp. 303–338.

Ferreira, E., Toledo, J.H., Dantas, A.A.A., Pereira, R.M. 2011, 'Cadastral Maps of Irrigated Areas by Center Pivots in the State of Minas Gerais, Using Cbers-2b/CCD Satellite Imaging', Engenharia Agrícola, vol. 31, no. 4, pp. 771-780.

Foody, G.M. 2002, 'Status of land cover classification accuracy assessment'. Remote Sens. Environ., vol. 80, pp. 185–201.

Graf, L. Bach, H., Tiede, D. 2020, 'Semantic Segmentation of Sentinel-2 Imagery for Mapping Irrigation Center Pivots', Remote Sensing, vol. 12, pp.3937. doi:10.3390/rs12233937

Ge, F., Wang, S., Liu, T. 2007, 'New benchmark for image segmentation evaluation', Journal of Electronic Imaging, vol. 16, no. 3 (Jul-Set). DOI: 10.1117/1.2762250

Guimarães, D.P., Landau, E.C., 2011, 'Mapeamento de Áreas Irrigadas por Pivôs Centrais no Estado de Minas Gerais', Boletim de Pesquisa e Desenvolvimento. Embrapa Milho e Sorgo, ISSN 1619-0154, 23 p.

Lima, J.E.F.W., Sano, E.E., Evangelista, B.A., Lopes, T.S.S. 2015, 'Variação da área irrigada por pivô central no Cerrado entre 2002 e 2013', Item, vol. 104-105, no.1, pp.68-72.

Maranha, L.G. 2018, 'Mapeamento semiautomático de áreas irrigadas por pivôs centrais por meio de análise espacial orientada a objeto em imagens Landsat 8', Msc. Dissertation, Universidade Federal do Paraná. https://acervodigital.ufpr.br/bitstream/handle/1884/58932/R%20-%20D%20-%20LEANDRO%20GUIMARAES%20MARANHA.pdf?sequence=1&isAllowed=y

Martins, J.D., Bohrz, I.S.; Fredrich, M., Veronez, R.P., Kunz, G.A., Tura, E.F. 2016, 'Levantamento da área irrigada por pivô central no estado do Rio Grande do Sul'. Irriga, vol. 21, no. 2, pp. 300–311.

Ozelkan, E., Chenb, G., Ustundag, B.B. 2016, 'Multiscale object-based drought monitoring and comparison in rainfed and irrigated agriculture from Landsat 8 OLI imagery', International Journal of Applied Earth Observation and Geoinformation, vol. 44, no. 1, pp.159–170. DOI: http://dx.doi.org/10.1016/j.jag.2015.08.003

Pereira Júnior, L.C., Ferreira, N.C., Miziara, F. 2017, 'A expansão da irrigação por pivôs centrais no estado de goiás (1984-2015) ', Bol. Goia. Geogr. (Online), vol. 37, no. 2, pp.323-341.

Rolim, G.S., Camargo, M.B.P., Lania, D.G., Moraes, J.F.L. 2007, 'Classificação climática de Köppen e de Thornthwaite e sua aplicabilidade na determinação de zonas agroclimáticas para o Estado de São Paulo', Bragantia, vol. 66, no. 4, pp. 711-720. DOI: https://doi.org/10.1590/S0006-87052007000400022

Rundquist, D.C., Hoffman, R.O., Carlson, M.P., Cook, A.E. 1989 'The Nebraska Center-Pivot Inventory - an Example of Operational Satellite Remote-Sensing on a Long-Term Basis', Photogrammetric Engineering and Remote Sensing, vol. 55, no.5, pp.587–590.

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M., Berg, A.C, Fei-Fei, L. 2015, 'Imagenet large scale visual recognition challenge', Int. J. Comput. Vis., vol. 115, pp. 211–252.

Sano, E.E., Lima, J.E.F.W., Silva, E.M., Oliveira, E.C. 2005, 'Estimativa da variação na demanda de água para irrigação por pivô-central no Distrito Federal entre 1992 e 2002', Revista Engenharia Agrícola, vol. 25, no. 2, pp.508-515. DOI: 10.1590/S0100-69162005000200025

Santos, C.L.M.O., Lamparelli, R.A.C., Figueiredo, G.K.D.A., Dupuy, S., Boury, J., Luciano, A.C.S., Torres, R.S., Maire, G. 2019, 'Classification of crops, pastures, and tree plantations along the season with multi-sensor image time series in a subtropical agricultural region', Remote Sensing, vol. 11, no. 3, pp. 334. DOI:10.3390/rs11030334

Saraiva, M., Protas, E., Salgado, M., Souza Júnior, C. 2020, 'Automatic Mapping of Center Pivot Irrigation Systems from Satellite Images Using Deep Learning', Remote Sensing, vol. 12, no. 03, pp. 558. DOI: 10.3390/rs12030558

Schmidt, W., Coelho, R.D., Jacomazzi, M.A., Antunes, M.A.H. 2004, 'Distribuição espacial de pivôs centrais no Brasil: I - Região Sudeste', Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 8, no. 2-3, pp.330-333.

Shi, R., Ngan, K. N., Li, S. 2014, "Jaccard index compensation for object segmentation evaluation," IEEE International Conference on Image Processing (ICIP), Paris, France, 2014, pp. 4457-4461, doi: 10.1109/ICIP.2014.7025904.

Stehman, S.V., Wickham, J.D. 2011, 'Pixels, blocks of pixels, and polygons: Choosing a spatial unit for thematic accuracy assessment', Remote Sens. Environ., vol. 115, pp. 3044–3055.

Trimble, 2012, eCognition® Developer 8.8: Reference Book.

Vogels, M.F.A., Jong, S.M., Sterk, G., Douma, H., Addink, E.A. 2019a, 'Spatio-temporal patterns of smallholder irrigated agriculture in the Horn of Africa using GEOBIA and Sentinel-2 imagery', Remote Sensing, vol. 11, no. 2, pp.143. DOI: https://doi.org/10.3390/rs11020143

Vogels, M.F.A., Addink, E.A., Sterk, G., Jong, S.M. 2019b, 'Mapping irrigated agriculture in complex landscapes using SPOT6 imagery and object-based image analysis - A case study in the Central Rift Valley, Ethiopia', Int. J. Appl. Earth Obs. Geoinf., vol. 19, no. 1, pp.118–229. DOI: https://doi.org/10.1016/j.jag.2018.07.019

Wenger, K., Vadjunec, J.M., Fagin, T. 2017, 'Groundwater Governance and the Growth of Center Pivot Irrigation in Cimarron County, OK and Union County, NM: Implications for Community Vulnerability to Drought', Water, vol. 9, no. 1, pp.39-59; DOI:10.3390/w9010039

Ye, S., Pontius, R.G., Jr. Rakshit, R. 2018, 'A review of accuracy assessment for object-based image analysis: From per-pixel to per-polygon approaches', ISPRS J. Photogramm. Remote Sens., vol. 141, pp. 137–147

Zhang, C., Yue, P., Di, L., Wu, Z. 2018, 'Automatic identification of center pivot irrigation systems from Landsat images using Convolutional Neural Networks', Agriculture, vol. 8, no. 10, pp.147. DOI: https://doi.org/10.3390/agriculture8100147

Zonta, J.H., Bezerra, J.R.C., Sofiatti, V., Farias, F.J.C., Carvalho, L.P. 2015, 'Efeito da irrigação no rendimento e qualidade de fibras em cultivares de algodoeiro herbáceo', Revista Caatinga, vol. 28, no. 4, pp.43-52.

Downloads

Published

2023-10-10

Issue

Section

Geography